如何将一个数除3而不使用*、/、+、-、%等运算符?

号码可以有签名,也可以没有签名。


当前回答

哪里InputValue是数字除以3

SELECT AVG(NUM) 
  FROM (SELECT InputValue NUM from sys.dual
         UNION ALL SELECT 0 from sys.dual
         UNION ALL SELECT 0 from sys.dual) divby3

其他回答

为什么我们不直接用在大学里学过的定义呢?结果可能效率低,但很清楚,因为乘法只是递归的减法,减法是加法,那么加法可以通过递归的异或/和逻辑端口组合来执行。

#include <stdio.h>

int add(int a, int b){
   int rc;
   int carry;
   rc = a ^ b; 
   carry = (a & b) << 1;
   if (rc & carry) 
      return add(rc, carry);
   else
      return rc ^ carry; 
}

int sub(int a, int b){
   return add(a, add(~b, 1)); 
}

int div( int D, int Q )
{
/* lets do only positive and then
 * add the sign at the end
 * inversion needs to be performed only for +Q/-D or -Q/+D
 */
   int result=0;
   int sign=0;
   if( D < 0 ) {
      D=sub(0,D);
      if( Q<0 )
         Q=sub(0,Q);
      else
         sign=1;
   } else {
      if( Q<0 ) {
         Q=sub(0,Q);
         sign=1;
      } 
   }
   while(D>=Q) {
      D = sub( D, Q );
      result++;
   }
/*
* Apply sign
*/
   if( sign )
      result = sub(0,result);
   return result;
}

int main( int argc, char ** argv ) 
{
    printf( "2 plus 3=%d\n", add(2,3) );
    printf( "22 div 3=%d\n", div(22,3) );
    printf( "-22 div 3=%d\n", div(-22,3) );
    printf( "-22 div -3=%d\n", div(-22,-3) );
    printf( "22 div 03=%d\n", div(22,-3) );
    return 0;
}

有人说……首先让它工作。注意,该算法应该适用于负Q…

如果你提醒自己标准的学校除法方法,用二进制来做,你会发现在3的情况下,你只是在有限的一组值中除法和减法(在这种情况下,从0到5)。这些可以用switch语句处理,以摆脱算术运算符。

static unsigned lamediv3(unsigned n)
{
  unsigned result = 0, remainder = 0, mask = 0x80000000;

  // Go through all bits of n from MSB to LSB.
  for (int i = 0; i < 32; i++, mask >>= 1)
  {
    result <<= 1;
    // Shift in the next bit of n into remainder.
    remainder = remainder << 1 | !!(n & mask);

    // Divide remainder by 3, update result and remainer.
    // If remainder is less than 3, it remains intact.
    switch (remainder)
    {
    case 3:
      result |= 1;
      remainder = 0;
      break;

    case 4:
      result |= 1;
      remainder = 1;
      break;

    case 5:
      result |= 1;
      remainder = 2;
      break;
    }
  }

  return result;
}

#include <cstdio>

int main()
{
  // Verify for all possible values of a 32-bit unsigned integer.
  unsigned i = 0;

  do
  {
    unsigned d = lamediv3(i);

    if (i / 3 != d)
    {
      printf("failed for %u: %u != %u\n", i, d, i / 3);
      return 1;
    }
  }
  while (++i != 0);
}
#!/bin/ruby

def div_by_3(i)
  i.div 3        # always return int http://www.ruby-doc.org/core-1.9.3/Numeric.html#method-i-div
end

你可以使用(依赖于平台)内联程序集,例如,对于x86:(也适用于负数)

#include <stdio.h>

int main() {
  int dividend = -42, divisor = 5, quotient, remainder;

  __asm__ ( "cdq; idivl %%ebx;"
          : "=a" (quotient), "=d" (remainder)
          : "a"  (dividend), "b"  (divisor)
          : );

  printf("%i / %i = %i, remainder: %i\n", dividend, divisor, quotient, remainder);
  return 0;
}

你可以考虑用图或树状结构来解决这个问题。基本上生成的顶点数与要除以3的数一样多。然后继续将每个未配对的顶点与其他两个顶点配对。

粗糙的伪代码:

function divide(int num)
    while(num!=0)
        Add a new vertice to vertiexList.
        num--
    quotient = 0
    for each in vertexList(lets call this vertex A)
        if vertexList not empty
            Add an edge between A and another vertex(say B)
        else
            your Remainder is 1 and Quotient is quotient
        if vertexList not empty
            Add an edge between A and another vertex(say C)
        else
            your remainder is 2 and Quotient is quotient
        quotient++
        remove A, B, C from vertexList
    Remainder is 0 and Quotient is quotient

这显然是可以优化的,复杂度取决于你的数字有多大,但它应该工作,只要你能做++和——。 这就像数更酷的东西一样。