为什么~2等于-3?~操作符是如何工作的?
当前回答
位操作符是一个一元操作符,根据我的经验和知识,它的工作原理是符号和幅度方法。
例如~2的结果是-3。
这是因为逐位操作符将首先以符号和幅度表示数字,即0000 0010(8位操作符),其中MSB是符号位。
然后取2的负数,也就是-2。
-2用符号和幅度表示为1000 0010(8位运算符)。
之后,它将1添加到LSB(1000 0010 + 1),得到1000 0011。
也就是-3。
其他回答
这里,二进制(8位)中的2是00000010,它的1的补码是11111101, 1的补数减去1得到1111110 -1 = 11111100, 这里的符号是-作为第8个字符(从R到L)是1 求1的补,no。即00000011 = 3 符号是负的所以这里是-3。
位补操作符(~)是一个一元操作符。
它的工作原理如下
首先,它将给定的十进制数转换为相应的二进制数 价值。这是在2的情况下,它首先将2转换为0000 0010(到8位二进制数)。
然后它将数字中的所有1都转换为0,所有0都转换为1,然后数字将变成11111101。
这是-3的2的补表示。
为了找到无符号的值使用补,即。要简单地将1111 1101转换为十进制(=4294967293),只需在打印时使用%u。
很简单:
Before starting please remember that
1 Positive numbers are represented directly into the memory.
2. Whereas, negative numbers are stored in the form of 2's compliment.
3. If MSB(Most Significant bit) is 1 then the number is negative otherwise number is
positive.
你会发现~2:
Step:1 Represent 2 in a binary format
We will get, 0000 0010
Step:2 Now we have to find ~2(means 1's compliment of 2)
1's compliment
0000 0010 =================> 1111 1101
So, ~2 === 1111 1101, Here MSB(Most significant Bit) is 1(means negative value). So,
In memory it will be represented as 2's compliment(To find 2's compliment first we
have to find 1's compliment and then add 1 to it.)
Step3: Finding 2's compliment of ~2 i.e 1111 1101
1's compliment Adding 1 to it
1111 1101 =====================> 0000 0010 =================> 0000 0010
+ 1
---------
0000 0011
So, 2's compliment of 1111 1101, is 0000 0011
Step4: Converting back to decimal format.
binary format
0000 0011 ==============> 3
In step2: we have seen that the number is negative number so the final answer would
be -3
So, ~2 === -3
首先,我们必须把给定的数字分成它的二进制数,然后把它颠倒过来,把最后一个二进制数相加。执行完后,我们必须给我们正在寻找补数的前一位数字赋相反的符号 ~ 2 = 3 解释: 2的二进制形式是00000010变成11111101,这是1的补码,然后补码为00000010+1=00000011,这是3的二进制形式,带-符号,即-3
Javascript波浪号(~)将给定值强制转换为1的补位——所有位都是反向的。 这就是波浪的作用。这不是固执己见。它既不加也不减任何量。
0 -> 1
1 -> 0
...in every bit position [0...integer nbr of bits - 1]
On standard desktop processors using high-level languages like JavaScript, BASE10 signed arithmetic is the most common, but keep in mind, it's not the only kind. Bits at the CPU level are subject to interpretation based on a number of factors. At the 'code' level, in this case JavaScript, they are interpreted as a 32-bit signed integer by definition (let's leave floats out of this). Think of it as quantum, those 32-bits represent many possible values all at once. It depends entirely on the converting lens you view them through.
JavaScript Tilde operation (1's complement)
BASE2 lens
~0001 -> 1110 - end result of ~ bitwise operation
BASE10 Signed lens (typical JS implementation)
~1 -> -2
BASE10 Unsigned lens
~1 -> 14
以上所有观点同时都是正确的。