为什么~2等于-3?~操作符是如何工作的?
当前回答
这个操作是补语,不是否定语。
考虑~0 = -1,然后从这里开始。
否定的算法是,“补,加”。
你知道吗?还有一种“一的补”,它的逆数是对称的,它有一个0和一个-0。
其他回答
简单地说,~就是找到对称值(到-0.5)。
~a和a应该与0和-1中间的镜像对称。
- 5, 4, 3, 2, 1 | 0, 1, 2, 3, 4
~0 == -1
~1 == -2
~2 == -3
~3 == -4
这是因为计算机是如何表示负数的。
比如说,如果正值用1来计数,负值就用0。
1111 1111 == -1
1111 1110 == -2; // add one more '0' to '1111 1111'
1111 1101 == -3; // add one more '0' to '1111 1110'
最后,~i == -(i+1)。
Tl;dr ~翻转比特。结果符号就改变了。~2是负数(0b..101)。要输出一个负数红宝石打印-,则2的~2的补:-(~~2 + 1)== -(2 + 1)== 3。正数按原样输出。
有一个内部值,和它的字符串表示。对于正整数,它们基本重合:
irb(main):001:0> '%i' % 2
=> "2"
irb(main):002:0> 2
=> 2
后者相当于:
irb(main):003:0> 2.to_s
"2"
~翻转内部值的位。2 = 0b010。~2是0b..101。两个点(..)代表无限个1。由于结果的最高有效位(MSB)为1,因此结果为负数((~2)。= = true)。要输出一个负数的红宝石印-,则是二的内部补值。2的补位是通过翻转位,然后加1来计算的。0b的2的补。101等于3。是这样的:
irb(main):005:0> '%b' % 2
=> "10"
irb(main):006:0> '%b' % ~2
=> "..101"
irb(main):007:0> ~2
=> -3
总的来说,它翻转了位,从而改变了符号。为了输出一个负数,它输出-,然后~~2 + 1(~~2 == 2)。
ruby像这样输出负数的原因是,它将存储的值视为绝对值的2的补。换句话说,存储的是0b..101。它是一个负数,因此它是x的2的补,为了找到x,它是2的补0b..101。它是2的x的补,也就是x(例如~(~2 + 1)+ 1 == 2)。
如果你将~应用于一个负数,它只是翻转位(尽管如此,这改变了符号):
irb(main):008:0> '%b' % -3
=> "..101"
irb(main):009:0> '%b' % ~-3
=> "10"
irb(main):010:0> ~-3
=> 2
更令人困惑的是~0xffffff00 != 0xff(或MSB等于1的任何其他值)。让我们稍微简化一下:~0xf0 != 0x0f。这是因为它将0xf0视为正数。这是有道理的。因此,~0xf0 == 0x..f0f。结果是一个负数。0x的2的补。F0f是0xf1。所以:
irb(main):011:0> '%x' % ~0xf0
=> "..f0f"
irb(main):012:0> (~0xf0).to_s(16)
=> "-f1"
如果你不打算对结果应用位操作符,你可以考虑~作为-x - 1操作符:
irb(main):018:0> -2 - 1
=> -3
irb(main):019:0> --3 - 1
=> 2
但可以说,这并没有多大用处。
举个例子,假设你有一个8位的网络掩码(为了简单起见),你想计算0的个数。您可以通过翻转位并调用bit_length (0x0f. bit_length)来计算它们。bit_length == 4). But ~0xf0 == 0x..F0f,所以我们要去掉不需要的部分
irb(main):014:0> '%x' % (~0xf0 & 0xff)
=> "f"
irb(main):015:0> (~0xf0 & 0xff).bit_length
=> 4
或者你可以使用XOR运算符(^):
irb(main):016:0> i = 0xf0
irb(main):017:0> '%x' % i ^ ((1 << i.bit_length) - 1)
=> "f"
我知道这个问题的答案很久以前就贴出来了,但我想分享我的答案。
要找到一个数的一补,首先要找到它的二进制等价物。这里,十进制数字2用二进制形式表示为0000 0010。现在通过将其二进制表示的所有数字逆(将所有1都翻转为0,将所有0都翻转为1)来求其1的补数,这将得到:
0000 0010 → 1111 1101
这是十进制数2的1补。由于二进制数的第一个位,即符号位为1,这意味着它存储的数字的符号为负。(这里所指的数字不是2,而是2的1的补数)。
现在,由于数字存储为2的补数(取1的补数加1),所以要将这个二进制数1111 1101显示为十进制,首先我们需要找到它的2的补数,即:
1111 1101 → 0000 0010 + 1 → 0000 0011
这是2的补。二进制数0000 0011的十进制表示是3。并且,因为符号位是1,所以结果是-3。
提示:如果你仔细阅读这个过程,你会发现1的补码操作符的结果实际上是,数字(操作数-,这个操作符被应用)加1,带一个负号。你也可以用其他数字试试。
位操作符是一个一元操作符,根据我的经验和知识,它的工作原理是符号和幅度方法。
例如~2的结果是-3。
这是因为逐位操作符将首先以符号和幅度表示数字,即0000 0010(8位操作符),其中MSB是符号位。
然后取2的负数,也就是-2。
-2用符号和幅度表示为1000 0010(8位运算符)。
之后,它将1添加到LSB(1000 0010 + 1),得到1000 0011。
也就是-3。
简单的 ...........
作为任何数字的2的补,我们可以通过将所有1逆为0来计算,反之亦然,然后再加上1。
这里N= ~N产生的结果总是-(N+1)。因为系统以2的补码的形式存储数据,这意味着它像这样存储~N。
~N = -(~(~N)+1) =-(N+1).
例如::
N = 10 = 1010
Than ~N = 0101
so ~(~N) = 1010
so ~(~N) +1 = 1011
点就是负的原点。我的观点是假设我们有32位寄存器,这意味着2^31 -1位涉及到操作,剩下的一位在早期计算(补码)中被存储为符号位,通常为1。结果是~10 = -11。
~(-11) =10;
如果printf("%d",~0);结果是-1;
但printf(“%u”,~0)比结果:4294967295在32位机器上。