这是我能想到的最好的算法。
def get_primes(n):
numbers = set(range(n, 1, -1))
primes = []
while numbers:
p = numbers.pop()
primes.append(p)
numbers.difference_update(set(range(p*2, n+1, p)))
return primes
>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import get_primes').timeit(1)
1.1499958793645562
还能做得更快吗?
这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:
>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True
这是使用存储列表查找质数的一种优雅而简单的解决方案。从4个变量开始,你只需要测试除数的奇数质数,你只需要测试你要测试的质数的一半(测试9,11,13是否能整除17没有意义)。它将先前存储的质数作为除数进行测试。
# Program to calculate Primes
primes = [1,3,5,7]
for n in range(9,100000,2):
for x in range(1,(len(primes)/2)):
if n % primes[x] == 0:
break
else:
primes.append(n)
print primes
假设N < 9,080,191, Miller-Rabin's Primality检验的确定性实现
import sys
def miller_rabin_pass(a, n):
d = n - 1
s = 0
while d % 2 == 0:
d >>= 1
s += 1
a_to_power = pow(a, d, n)
if a_to_power == 1:
return True
for i in range(s-1):
if a_to_power == n - 1:
return True
a_to_power = (a_to_power * a_to_power) % n
return a_to_power == n - 1
def miller_rabin(n):
if n <= 2:
return n == 2
if n < 2_047:
return miller_rabin_pass(2, n)
return all(miller_rabin_pass(a, n) for a in (31, 73))
n = int(sys.argv[1])
primes = [2]
for p in range(3,n,2):
if miller_rabin(p):
primes.append(p)
print len(primes)
根据维基百科(http://en.wikipedia.org/wiki/Miller -Rabin_primality_test)上的文章,对于a = 37和73,测试N < 9,080,191足以判断N是否为合数。
我从原始米勒-拉宾测试的概率实现中改编了源代码:https://www.literateprograms.org/miller-rabin_primality_test__python_.html
对于最快的代码,numpy解决方案是最好的。不过,出于纯粹的学术原因,我发布了我的纯python版本,它比上面发布的食谱版本快不到50%。由于我将整个列表放在内存中,所以需要足够的空间来容纳所有内容,但它的可伸缩性似乎相当好。
def daniel_sieve_2(maxNumber):
"""
Given a number, returns all numbers less than or equal to
that number which are prime.
"""
allNumbers = range(3, maxNumber+1, 2)
for mIndex, number in enumerate(xrange(3, maxNumber+1, 2)):
if allNumbers[mIndex] == 0:
continue
# now set all multiples to 0
for index in xrange(mIndex+number, (maxNumber-3)/2+1, number):
allNumbers[index] = 0
return [2] + filter(lambda n: n!=0, allNumbers)
结果是:
>>>mine = timeit.Timer("daniel_sieve_2(1000000)",
... "from sieves import daniel_sieve_2")
>>>prev = timeit.Timer("get_primes_erat(1000000)",
... "from sieves import get_primes_erat")
>>>print "Mine: {0:0.4f} ms".format(min(mine.repeat(3, 1))*1000)
Mine: 428.9446 ms
>>>print "Previous Best {0:0.4f} ms".format(min(prev.repeat(3, 1))*1000)
Previous Best 621.3581 ms
对于Python 3
def rwh_primes2(n):
correction = (n%6>1)
n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
sieve = [True] * (n//3)
sieve[0] = False
for i in range(int(n**0.5)//3+1):
if sieve[i]:
k=3*i+1|1
sieve[ ((k*k)//3) ::2*k]=[False]*((n//6-(k*k)//6-1)//k+1)
sieve[(k*k+4*k-2*k*(i&1))//3::2*k]=[False]*((n//6-(k*k+4*k-2*k*(i&1))//6-1)//k+1)
return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]