如何在函数中创建或使用全局变量?

如何在其他函数中使用一个函数中定义的全局变量?


未能在适当的地方使用全局关键字通常会导致UnboundLocalError。在第一次使用后重新分配局部变量时,UnboundLocalError中解释了这方面的精确规则。一般来说,当寻求解释时,请将其他问题作为该问题的副本,当某人只需要知道全局关键字时,请关闭该问题。


当前回答

Initialized = 0  #Here This Initialized is global variable  

def Initialize():
     print("Initialized!")
     Initialized = 1  #This is local variable and assigning 1 to local variable
while Initialized == 0:  

这里我们比较全局变量Initialized为0,因此当循环条件为true时

     Initialize()

函数将被调用。循环将是无限的

#if we do Initialized=1 then loop will terminate  

else:
    print("Lets do something else now!")

其他回答

写入全局数组的显式元素显然不需要全局声明,尽管“批发”写入它确实有这样的要求:

import numpy as np

hostValue = 3.14159
hostArray = np.array([2., 3.])
hostMatrix = np.array([[1.0, 0.0],[ 0.0, 1.0]])

def func1():
    global hostValue    # mandatory, else local.
    hostValue = 2.0

def func2():
    global hostValue    # mandatory, else UnboundLocalError.
    hostValue += 1.0

def func3():
    global hostArray    # mandatory, else local.
    hostArray = np.array([14., 15.])

def func4():            # no need for globals
    hostArray[0] = 123.4

def func5():            # no need for globals
    hostArray[1] += 1.0

def func6():            # no need for globals
    hostMatrix[1][1] = 12.

def func7():            # no need for globals
    hostMatrix[0][0] += 0.33

func1()
print "After func1(), hostValue = ", hostValue
func2()
print "After func2(), hostValue = ", hostValue
func3()
print "After func3(), hostArray = ", hostArray
func4()
print "After func4(), hostArray = ", hostArray
func5()
print "After func5(), hostArray = ", hostArray
func6()
print "After func6(), hostMatrix = \n", hostMatrix
func7()
print "After func7(), hostMatrix = \n", hostMatrix

有两种方法可以将变量声明为全局变量:

1.在函数内部分配变量并使用全局线

def declare_a_global_variable():
    global global_variable_1
    global_variable_1 = 1

# Note to use the function to global variables
declare_a_global_variable() 

2.分配变量外部函数:

global_variable_2 = 2

现在我们可以在其他函数中使用这些声明的全局变量:

def declare_a_global_variable():
    global global_variable_1
    global_variable_1 = 1

# Note to use the function to global variables
declare_a_global_variable() 
global_variable_2 = 2

def print_variables():
    print(global_variable_1)
    print(global_variable_2)
print_variables() # prints 1 & 2

注1:

如果要更改另一个函数(如update_variables())中的全局变量,则应在分配变量之前在该函数中使用全局行:

global_variable_1 = 1
global_variable_2 = 2

def update_variables():
    global global_variable_1
    global_variable_1 = 11
    global_variable_2 = 12 # will update just locally for this function

update_variables()
print(global_variable_1) # prints 11
print(global_variable_2) # prints 2

注2:

在函数内部不使用全局行时,列表和字典变量的注释1有一个例外:

# declaring some global variables
variable = 'peter'
list_variable_1 = ['a','b']
list_variable_2 = ['c','d']

def update_global_variables():
    """without using global line"""
    variable = 'PETER' # won't update in global scope
    list_variable_1 = ['A','B'] # won't update in global scope
    list_variable_2[0] = 'C' # updated in global scope surprisingly this way
    list_variable_2[1] = 'D' # updated in global scope surprisingly this way

update_global_variables()

print('variable is: %s'%variable) # prints peter
print('list_variable_1 is: %s'%list_variable_1) # prints ['a', 'b']
print('list_variable_2 is: %s'%list_variable_2) # prints ['C', 'D']

类似此代码:

myVar = 12

def myFunc():
  myVar += 12

Key:

如果在字符串外部声明变量,它将变为全局变量。

如果在字符串中声明变量,它将变为本地变量。

如果要在字符串中声明全局变量,请在要声明的变量之前使用关键字global:

myVar = 124
def myFunc():
  global myVar2
  myVar2 = 100
myFunc()
print(myVar2)

然后文档中有100个。

试试看:

def x1():
    global x
    x += 1
    print('x1: ', x)

def x2():
    global x
    x = x+1
    print('x2: ', x)

x = 5
print('x:  ', x)
x1()
x2()

# Output:
# x:   5
# x1:  6
# x2:  7

引用要显示更改的类命名空间。

在本例中,runner使用文件config中的max。我希望我的测试在跑步者使用时更改max的值。

main/config.py

max = 15000

主/运行程序.py

from main import config
def check_threads():
    return max < thread_count 

测试/runner_test.py

from main import runner                # <----- 1. add file
from main.runner import check_threads
class RunnerTest(unittest):
   def test_threads(self):
       runner.max = 0                  # <----- 2. set global 
       check_threads()