在与同事讨论绩效、教学、发送错误报告或搜索邮件列表和Stack Overflow上的指导时,经常会询问一个可重复的示例,并且总是很有用。

你有什么建议来创建一个优秀的例子?如何以文本格式粘贴r中的数据结构?您还应包括哪些其他信息?

除了使用dput()、dump()或structure()之外,还有其他技巧吗?什么时候应该包含library()或require()语句?除了c、df、data等之外,应该避免哪些保留字。?

如何做出一个伟大的、可重复的例子?


当前回答

最初的帖子指的是现已退役的数据营的小提琴演奏服务。它已被重新命名为数据营灯,不能像我的回答所示的那样容易嵌入。

我想知道http://old.r-fiddle.org/链接可能是分享问题的一种非常简单的方式。它接收一个唯一的ID,比如,甚至可以考虑将其嵌入SO中。

其他回答

这是一个很好的指南。

最重要的一点是:制作一小段代码,我们可以运行它来了解问题所在。一个有用的函数是dput(),但是如果您有非常大的数据,那么您可能需要制作一个小样本数据集,或者只使用前10行左右。

编辑:

此外,确保您确定了问题所在。示例不应该是一个完整的R脚本,其中包含“在第200行出现错误”。如果您使用R(我爱浏览器())和Google中的调试工具,那么您应该能够真正确定问题所在,并重现一个同样错误的小例子。

如果您有一个大数据集,无法使用dput()轻松放入脚本,请将数据发布到pastebin并使用read.table加载它们:

d <- read.table("http://pastebin.com/raw.php?i=m1ZJuKLH")

灵感来自Henrik。

就我个人而言,我更喜欢“一”行。大致如下:

my.df <- data.frame(col1 = sample(c(1,2), 10, replace = TRUE),
        col2 = as.factor(sample(10)), col3 = letters[1:10],
        col4 = sample(c(TRUE, FALSE), 10, replace = TRUE))
my.list <- list(list1 = my.df, list2 = my.df[3], list3 = letters)

数据结构应该模仿作者问题的想法,而不是准确的逐字结构。当变量不覆盖我自己的变量或函数(如df)时,我真的很感激。

或者,你可以切几个角,指向一个预先存在的数据集,比如:

library(vegan)
data(varespec)
ord <- metaMDS(varespec)

不要忘记提及您可能使用的任何特殊软件包。

如果你想在更大的物体上演示一些东西,你可以尝试

my.df2 <- data.frame(a = sample(10e6), b = sample(letters, 10e6, replace = TRUE))

如果通过光栅包处理空间数据,则可以生成一些随机数据。在包装小插曲中可以找到很多例子,但这里有一个小亮点。

library(raster)
r1 <- r2 <- r3 <- raster(nrow=10, ncol=10)
values(r1) <- runif(ncell(r1))
values(r2) <- runif(ncell(r2))
values(r3) <- runif(ncell(r3))
s <- stack(r1, r2, r3)

如果您需要一些在sp中实现的空间对象,可以通过“空间”包中的外部文件(如ESRI shapefile)获取一些数据集(请参见任务视图中的空间视图)。

library(rgdal)
ogrDrivers()
dsn <- system.file("vectors", package = "rgdal")[1]
ogrListLayers(dsn)
ogrInfo(dsn=dsn, layer="cities")
cities <- readOGR(dsn=dsn, layer="cities")

从R.2.14开始(我猜),您可以将数据文本表示直接输入read.table:

 df <- read.table(header=TRUE, 
  text="Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa
") 

您可以使用reprex执行此操作。

正如mt1022所指出的,“……生产最小、可重复示例的好包装是tidyverse的“reprex”。”。

根据Tidyverse的说法:

“reprex”的目标是以这样一种方式打包您的问题代码,使其他人可以运行它并感受到您的痛苦。

tidyverse网站上给出了一个示例。

library(reprex)
y <- 1:4
mean(y)
reprex() 

我认为这是创建可复制示例的最简单方法。