如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
当前回答
TLDR:复制-粘贴下面的选项1或选项2
真正的/完整的答案:让Pythons json模块与你的类一起工作
AKA,求解:json。dump ({"thing": YOUR_CLASS()})
解释:
Yes, a good reliable solution exists No, there is no python "official" solution By official solution, I mean there is no way (as of 2023) to add a method to your class (like toJSON in JavaScript) and/or no way to register your class with the built-in json module. When something like json.dumps([1,2, your_obj]) is executed, python doesn't check a lookup table or object method. I'm not sure why other answers don't explain this The closest official approach is probably andyhasit's answer which is to inherit from a dictionary. However, inheriting from a dictionary doesn't work very well for many custom classes like AdvancedDateTime, or pytorch tensors. The ideal workaround is this: Mutate json.dumps (affects everywhere, even pip modules that import json) Add def __json__(self) method to your class
选项1:让一个模块来做补丁
PIP安装json-fix (扩展+包装版FancyJohn的回答,谢谢@FancyJohn)
your_class_definition.py
import json_fix
class YOUR_CLASS:
def __json__(self):
# YOUR CUSTOM CODE HERE
# you probably just want to do:
# return self.__dict__
return "a built-in object that is naturally json-able"
这是它。
使用示例:
from your_class_definition import YOUR_CLASS
import json
json.dumps([1,2, YOUR_CLASS()], indent=0)
# '[\n1,\n2,\n"a built-in object that is naturally json-able"\n]'
生成json。dump适用于Numpy数组,Pandas DataFrames和其他第三方对象,请参阅模块(只有大约2行代码,但需要解释)。
它是如何工作的?嗯…
选项2:补丁json。把你自己
注意:这种方法是简化的,它在已知的edgcase上失败(例如:如果你的自定义类继承了dict或其他内置类),并且它错过了控制外部类的json行为(numpy数组,datetime, dataframes,张量等)。
some_file_thats_imported_before_your_class_definitions.py
# Step: 1
# create the patch
from json import JSONEncoder
def wrapped_default(self, obj):
return getattr(obj.__class__, "__json__", wrapped_default.default)(obj)
wrapped_default.default = JSONEncoder().default
# apply the patch
JSONEncoder.original_default = JSONEncoder.default
JSONEncoder.default = wrapped_default
your_class_definition.py
# Step 2
class YOUR_CLASS:
def __json__(self, **options):
# YOUR CUSTOM CODE HERE
# you probably just want to do:
# return self.__dict__
return "a built-in object that is natually json-able"
_
其他答案似乎都是“序列化自定义对象的最佳实践/方法”
在这里的文档中已经介绍过了(搜索“complex”可以找到编码复数的例子)
其他回答
只需要像这样添加to_json方法到你的类中:
def to_json(self):
return self.message # or how you want it to be serialized
然后将这段代码(来自这个答案)添加到所有内容的顶部:
from json import JSONEncoder
def _default(self, obj):
return getattr(obj.__class__, "to_json", _default.default)(obj)
_default.default = JSONEncoder().default
JSONEncoder.default = _default
这将会在导入json模块时monkey-patch,所以 JSONEncoder.default()自动检查特殊的to_json() 方法,并使用它对找到的对象进行编码。
就像Onur说的,但是这次你不需要更新项目中的每个json.dumps()。
你们为什么要把事情搞得这么复杂?这里有一个简单的例子:
#!/usr/bin/env python3
import json
from dataclasses import dataclass
@dataclass
class Person:
first: str
last: str
age: int
@property
def __json__(self):
return {
"name": f"{self.first} {self.last}",
"age": self.age
}
john = Person("John", "Doe", 42)
print(json.dumps(john, indent=4, default=lambda x: x.__json__))
这样你也可以序列化嵌套类,因为__json__返回一个python对象而不是字符串。不需要使用JSONEncoder,因为使用简单lambda的默认参数也可以很好地工作。
我使用@property代替了一个简单的函数,因为这样感觉更自然和现代。@dataclass也只是一个例子,它也适用于“普通”类。
我喜欢Onur的答案,但会扩展到包括一个可选的toJSON()方法,用于对象序列化自己:
def dumper(obj):
try:
return obj.toJSON()
except:
return obj.__dict__
print json.dumps(some_big_object, default=dumper, indent=2)
正如在许多其他答案中提到的,您可以将函数传递给json。转储将不是默认支持的类型之一的对象转换为受支持的类型。令人惊讶的是,他们都没有提到最简单的情况,即使用内置函数vars将对象转换为包含其所有属性的dict:
json.dumps(obj, default=vars)
注意,这只涵盖了基本的情况,如果你需要对某些类型进行更具体的序列化(例如排除某些属性或没有__dict__属性的对象),你需要使用自定义函数或JSONEncoder,如其他答案中所述。
首先,我们需要使我们的对象符合JSON,这样我们就可以使用标准JSON模块转储它。我是这样做的:
def serialize(o):
if isinstance(o, dict):
return {k:serialize(v) for k,v in o.items()}
if isinstance(o, list):
return [serialize(e) for e in o]
if isinstance(o, bytes):
return o.decode("utf-8")
return o