如何将任意长度的列表拆分为大小相等的块?


请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。

对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。


当前回答

就像@AaronHall我来这里找的是大小大致均匀的大块。对此有不同的解释。在我的例子中,如果期望的大小是N,我希望每个组的大小>=N。因此,在上述大多数情况下产生的孤儿应重新分配给其他群体。

这可以通过以下方式完成:

def nChunks(l, n):
    """ Yield n successive chunks from l.
    Works for lists,  pandas dataframes, etc
    """
    newn = int(1.0 * len(l) / n + 0.5)
    for i in xrange(0, n-1):
        yield l[i*newn:i*newn+newn]
    yield l[n*newn-newn:]

(通过将列表拆分为N个长度大致相等的部分),只需将其称为nChunks(l,l/N)或nChunk(l,floor(l/N))

其他回答

itertools模块中的配方提供了两种方法来实现这一点,具体取决于您希望如何处理最终的奇数大小的批次(保留它、用填充值填充它、忽略它或引发异常):

from itertools import islice, izip_longest

def batched(iterable, n):
    "Batch data into lists of length n. The last batch may be shorter."
    # batched('ABCDEFG', 3) --> ABC DEF G
    it = iter(iterable)
    while True:
        batch = list(islice(it, n))
        if not batch:
            return
        yield batch

def grouper(iterable, n, *, incomplete='fill', fillvalue=None):
    "Collect data into non-overlapping fixed-length chunks or blocks"
    # grouper('ABCDEFG', 3, fillvalue='x') --> ABC DEF Gxx
    # grouper('ABCDEFG', 3, incomplete='strict') --> ABC DEF ValueError
    # grouper('ABCDEFG', 3, incomplete='ignore') --> ABC DEF
    args = [iter(iterable)] * n
    if incomplete == 'fill':
        return zip_longest(*args, fillvalue=fillvalue)
    if incomplete == 'strict':
        return zip(*args, strict=True)
    if incomplete == 'ignore':
        return zip(*args)
    else:
        raise ValueError('Expected fill, strict, or ignore')
def split_seq(seq, num_pieces):
    start = 0
    for i in xrange(num_pieces):
        stop = start + len(seq[i::num_pieces])
        yield seq[start:stop]
        start = stop

用法:

seq = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

for seq in split_seq(seq, 3):
    print seq

我意识到这个问题已经过时了(在谷歌上被它绊倒了),但肯定像下面这样的问题比任何复杂的建议都要简单和清晰得多,而且只使用切片:

def chunker(iterable, chunksize):
    for i,c in enumerate(iterable[::chunksize]):
        yield iterable[i*chunksize:(i+1)*chunksize]

>>> for chunk in chunker(range(0,100), 10):
...     print list(chunk)
... 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
... etc ...

延迟加载版本

导入pprintpprint.pprint(列表(块(范围(10,75),10))[范围(10、20),范围(20、30),范围(30、40),范围(40、50),范围(50、60),范围(60、70),范围(70,75)]将此实现的结果与接受答案的示例使用结果进行比较。

上面的许多函数都假定整个可迭代函数的长度是预先知道的,或者至少计算起来很便宜。

对于一些流式对象,这意味着首先将完整数据加载到内存中(例如下载整个文件)以获取长度信息。

但是,如果您还不知道完整大小,可以使用以下代码:

def chunks(iterable, size):
    """
    Yield successive chunks from iterable, being `size` long.

    https://stackoverflow.com/a/55776536/3423324
    :param iterable: The object you want to split into pieces.
    :param size: The size each of the resulting pieces should have.
    """
    i = 0
    while True:
        sliced = iterable[i:i + size]
        if len(sliced) == 0:
            # to suppress stuff like `range(max, max)`.
            break
        # end if
        yield sliced
        if len(sliced) < size:
            # our slice is not the full length, so we must have passed the end of the iterator
            break
        # end if
        i += size  # so we start the next chunk at the right place.
    # end while
# end def

这之所以有效,是因为如果您传递了一个iterable的结尾,slice命令将返回less/no元素:

"abc"[0:2] == 'ab'
"abc"[2:4] == 'c'
"abc"[4:6] == ''

我们现在使用切片的结果,并计算生成的块的长度。如果它低于我们的预期,我们知道我们可以结束迭代。

这样,除非访问,否则不会执行迭代器。

非常简单的事情:

def chunks(xs, n):
    n = max(1, n)
    return (xs[i:i+n] for i in range(0, len(xs), n))

对于Python 2,使用xrange()代替range()。