如何在整数列表中找到重复项并创建重复项的另一个列表?


当前回答

简单地检查,对于所有列表项,如果一个项的第一个索引等于该项的最后一个索引:

>>> lastindex = lambda arr, el: len(arr) - arr[::-1].index(el) -1
>>> is_duplicate  = lambda arr, el: arr.index(el) != lastindex(arr, el)
>>> duplicates = lambda arr: [*set(x for x in arr if is_duplicate(arr, x))]
>>> 
>>> a=[2,3,5,7,11,13, 2,17,7,7,17,18,3,19,5,2,7,48,48,2,19]
>>> duplicates(a)
[2, 3, 5, 7, 48, 17, 19]
>>> 

其他回答

这里有一个简洁明了的解决方案——

for x in set(li):
    li.remove(x)

li = list(set(li))

要删除重复项,请使用集合(a)。要打印副本,可以这样做:

a = [1,2,3,2,1,5,6,5,5,5]

import collections
print([item for item, count in collections.Counter(a).items() if count > 1])

## [1, 2, 5]

请注意Counter并不是特别有效(计时),可能会在这里过度使用。Set会表现得更好。这段代码以源顺序计算一个唯一元素的列表:

seen = set()
uniq = []
for x in a:
    if x not in seen:
        uniq.append(x)
        seen.add(x)

或者,更简洁地说:

seen = set()
uniq = [x for x in a if x not in seen and not seen.add(x)]    

我不推荐后一种风格,因为它不清楚not seen.add(x)在做什么(set add()方法总是返回None,因此需要not)。

计算没有库的重复元素列表:

seen = set()
dupes = []

for x in a:
    if x in seen:
        dupes.append(x)
    else:
        seen.add(x)

或者,更简洁地说:

seen = set()
dupes = [x for x in a if x in seen or seen.add(x)]    

如果列表元素不可哈希,则不能使用set /dicts,必须使用二次时间解决方案(逐个比较)。例如:

a = [[1], [2], [3], [1], [5], [3]]

no_dupes = [x for n, x in enumerate(a) if x not in a[:n]]
print no_dupes # [[1], [2], [3], [5]]

dupes = [x for n, x in enumerate(a) if x in a[:n]]
print dupes # [[1], [3]]

不需要转换为列表,可能最简单的方法是如下所示。 在面试中,当他们要求不要使用集合时,这可能会很有用

a=[1,2,3,3,3]
dup=[]
for each in a:
  if each not in dup:
    dup.append(each)
print(dup)

======= else获取唯一值和重复值的2个单独列表

a=[1,2,3,3,3]
uniques=[]
dups=[]

for each in a:
  if each not in uniques:
    uniques.append(each)
  else:
    dups.append(each)
print("Unique values are below:")
print(uniques)
print("Duplicate values are below:")
print(dups)

尽管它的复杂度是O(n log n),但这似乎有点竞争性,请参阅下面的基准测试。

a = sorted(a)
dupes = list(set(a[::2]) & set(a[1::2]))

排序会把副本放在一起,所以它们都在偶数下标和奇数下标处。唯一值只能在偶数或奇数下标处存在,不能同时存在。所以偶数下标值和奇数下标值的交集就是重复项。

基准测试结果:

这使用了MSeifert的基准测试,但只使用了从接受的答案(georgs)、最慢的解决方案、最快的解决方案(不包括it_duplcopies,因为它不唯一重复)和我的解决方案。否则就太拥挤了,颜色也太相似了。

如果允许修改给定的列表,那么第一行可以是a.sort(),这样会快一些。但是基准会多次重用相同的列表,因此修改它会打乱基准。

显然set(a[::2]).intersection(a[1::2])不会创建第二个集合,而且速度会快一点,但它也会长一点。

我在寻找相关的东西时遇到了这个问题-想知道为什么没有人提供基于生成器的解决方案?解决这个问题的方法是:

>>> print list(getDupes_9([1,2,3,2,1,5,6,5,5,5]))
[1, 2, 5]

我很关心可伸缩性,所以测试了几种方法,包括在小列表上工作得很好的naive项,但随着列表变大,可伸缩性很差(注意-使用timeit会更好,但这只是说明)。

我加入了@moooeeeep作为比较(它的速度非常快:如果输入列表是完全随机的,速度最快)和itertools方法,对于大多数排序的列表,它甚至更快……现在包括来自@ fireynx的熊猫方法-缓慢,但不是可怕的,而且简单。注意:在我的机器上,sort/tee/zip方法对于大型有序列表始终是最快的,moooeeeep对于洗牌列表是最快的,但您的情况可能会有所不同。

优势

非常快速简单的测试'任何'重复使用相同的代码

假设

重复项只应报告一次 重复的订单不需要保留 Duplicate可能位于列表中的任何位置


最快的解决方案,1m条目:

def getDupes(c):
        '''sort/tee/izip'''
        a, b = itertools.tee(sorted(c))
        next(b, None)
        r = None
        for k, g in itertools.izip(a, b):
            if k != g: continue
            if k != r:
                yield k
                r = k

方法测试

import itertools
import time
import random

def getDupes_1(c):
    '''naive'''
    for i in xrange(0, len(c)):
        if c[i] in c[:i]:
            yield c[i]

def getDupes_2(c):
    '''set len change'''
    s = set()
    for i in c:
        l = len(s)
        s.add(i)
        if len(s) == l:
            yield i

def getDupes_3(c):
    '''in dict'''
    d = {}
    for i in c:
        if i in d:
            if d[i]:
                yield i
                d[i] = False
        else:
            d[i] = True

def getDupes_4(c):
    '''in set'''
    s,r = set(),set()
    for i in c:
        if i not in s:
            s.add(i)
        elif i not in r:
            r.add(i)
            yield i

def getDupes_5(c):
    '''sort/adjacent'''
    c = sorted(c)
    r = None
    for i in xrange(1, len(c)):
        if c[i] == c[i - 1]:
            if c[i] != r:
                yield c[i]
                r = c[i]

def getDupes_6(c):
    '''sort/groupby'''
    def multiple(x):
        try:
            x.next()
            x.next()
            return True
        except:
            return False
    for k, g in itertools.ifilter(lambda x: multiple(x[1]), itertools.groupby(sorted(c))):
        yield k

def getDupes_7(c):
    '''sort/zip'''
    c = sorted(c)
    r = None
    for k, g in zip(c[:-1],c[1:]):
        if k == g:
            if k != r:
                yield k
                r = k

def getDupes_8(c):
    '''sort/izip'''
    c = sorted(c)
    r = None
    for k, g in itertools.izip(c[:-1],c[1:]):
        if k == g:
            if k != r:
                yield k
                r = k

def getDupes_9(c):
    '''sort/tee/izip'''
    a, b = itertools.tee(sorted(c))
    next(b, None)
    r = None
    for k, g in itertools.izip(a, b):
        if k != g: continue
        if k != r:
            yield k
            r = k

def getDupes_a(l):
    '''moooeeeep'''
    seen = set()
    seen_add = seen.add
    # adds all elements it doesn't know yet to seen and all other to seen_twice
    for x in l:
        if x in seen or seen_add(x):
            yield x

def getDupes_b(x):
    '''iter*/sorted'''
    x = sorted(x)
    def _matches():
        for k,g in itertools.izip(x[:-1],x[1:]):
            if k == g:
                yield k
    for k, n in itertools.groupby(_matches()):
        yield k

def getDupes_c(a):
    '''pandas'''
    import pandas as pd
    vc = pd.Series(a).value_counts()
    i = vc[vc > 1].index
    for _ in i:
        yield _

def hasDupes(fn,c):
    try:
        if fn(c).next(): return True    # Found a dupe
    except StopIteration:
        pass
    return False

def getDupes(fn,c):
    return list(fn(c))

STABLE = True
if STABLE:
    print 'Finding FIRST then ALL duplicates, single dupe of "nth" placed element in 1m element array'
else:
    print 'Finding FIRST then ALL duplicates, single dupe of "n" included in randomised 1m element array'
for location in (50,250000,500000,750000,999999):
    for test in (getDupes_2, getDupes_3, getDupes_4, getDupes_5, getDupes_6,
                 getDupes_8, getDupes_9, getDupes_a, getDupes_b, getDupes_c):
        print 'Test %-15s:%10d - '%(test.__doc__ or test.__name__,location),
        deltas = []
        for FIRST in (True,False):
            for i in xrange(0, 5):
                c = range(0,1000000)
                if STABLE:
                    c[0] = location
                else:
                    c.append(location)
                    random.shuffle(c)
                start = time.time()
                if FIRST:
                    print '.' if location == test(c).next() else '!',
                else:
                    print '.' if [location] == list(test(c)) else '!',
                deltas.append(time.time()-start)
            print ' -- %0.3f  '%(sum(deltas)/len(deltas)),
        print
    print

“all dupes”测试的结果是一致的,在这个数组中找到“first”重复,然后是“all”重复:

Finding FIRST then ALL duplicates, single dupe of "nth" placed element in 1m element array
Test set len change :    500000 -  . . . . .  -- 0.264   . . . . .  -- 0.402  
Test in dict        :    500000 -  . . . . .  -- 0.163   . . . . .  -- 0.250  
Test in set         :    500000 -  . . . . .  -- 0.163   . . . . .  -- 0.249  
Test sort/adjacent  :    500000 -  . . . . .  -- 0.159   . . . . .  -- 0.229  
Test sort/groupby   :    500000 -  . . . . .  -- 0.860   . . . . .  -- 1.286  
Test sort/izip      :    500000 -  . . . . .  -- 0.165   . . . . .  -- 0.229  
Test sort/tee/izip  :    500000 -  . . . . .  -- 0.145   . . . . .  -- 0.206  *
Test moooeeeep      :    500000 -  . . . . .  -- 0.149   . . . . .  -- 0.232  
Test iter*/sorted   :    500000 -  . . . . .  -- 0.160   . . . . .  -- 0.221  
Test pandas         :    500000 -  . . . . .  -- 0.493   . . . . .  -- 0.499  

当列表首先被打乱时,排序的代价就变得明显了——效率显著下降,@moooeeeep方法占主导地位,set和dict方法类似,但性能较差:

Finding FIRST then ALL duplicates, single dupe of "n" included in randomised 1m element array
Test set len change :    500000 -  . . . . .  -- 0.321   . . . . .  -- 0.473  
Test in dict        :    500000 -  . . . . .  -- 0.285   . . . . .  -- 0.360  
Test in set         :    500000 -  . . . . .  -- 0.309   . . . . .  -- 0.365  
Test sort/adjacent  :    500000 -  . . . . .  -- 0.756   . . . . .  -- 0.823  
Test sort/groupby   :    500000 -  . . . . .  -- 1.459   . . . . .  -- 1.896  
Test sort/izip      :    500000 -  . . . . .  -- 0.786   . . . . .  -- 0.845  
Test sort/tee/izip  :    500000 -  . . . . .  -- 0.743   . . . . .  -- 0.804  
Test moooeeeep      :    500000 -  . . . . .  -- 0.234   . . . . .  -- 0.311  *
Test iter*/sorted   :    500000 -  . . . . .  -- 0.776   . . . . .  -- 0.840  
Test pandas         :    500000 -  . . . . .  -- 0.539   . . . . .  -- 0.540