我有一条从a到B的直线和一个半径为R的圆。

用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?


当前回答

好吧,我不会给你代码,但既然你已经标记了这个算法,我认为这对你来说无关紧要。 首先,你要得到一个垂直于这条直线的向量。

y = ax + c是一个未知变量c是未知变量 为了解决这个问题,计算直线经过圆心时的值。

也就是说, 将圆心的位置代入直线方程,解出c。 然后计算原直线与其法线的交点。

这样就能得到直线上离圆最近的点。 计算该点到圆中心之间的距离(使用矢量的大小)。 如果这个小于圆的半径,看,我们有一个交点!

其他回答

以下是我在TypeScript中的解决方案,遵循@Mizipzor建议的想法(使用投影):

/**
 * Determines whether a line segment defined by a start and end point intersects with a sphere defined by a center point and a radius
 * @param a the start point of the line segment
 * @param b the end point of the line segment
 * @param c the center point of the sphere
 * @param r the radius of the sphere
 */
export function lineSphereIntersects(
  a: IPoint,
  b: IPoint,
  c: IPoint,
  r: number
): boolean {
  // find the three sides of the triangle formed by the three points
  const ab: number = distance(a, b);
  const ac: number = distance(a, c);
  const bc: number = distance(b, c);

  // check to see if either ends of the line segment are inside of the sphere
  if (ac < r || bc < r) {
    return true;
  }

  // find the angle between the line segment and the center of the sphere
  const numerator: number = Math.pow(ac, 2) + Math.pow(ab, 2) - Math.pow(bc, 2);
  const denominator: number = 2 * ac * ab;
  const cab: number = Math.acos(numerator / denominator);

  // find the distance from the center of the sphere and the line segment
  const cd: number = Math.sin(cab) * ac;

  // if the radius is at least as long as the distance between the center and the line
  if (r >= cd) {
    // find the distance between the line start and the point on the line closest to
    // the center of the sphere
    const ad: number = Math.cos(cab) * ac;
    // intersection occurs when the point on the line closest to the sphere center is
    // no further away than the end of the line
    return ad <= ab;
  }
  return false;
}

export function distance(a: IPoint, b: IPoint): number {
  return Math.sqrt(
    Math.pow(b.z - a.z, 2) + Math.pow(b.y - a.y, 2) + Math.pow(b.x - a.x, 2)
  );
}

export interface IPoint {
  x: number;
  y: number;
  z: number;
}

基于@Joe Skeen的python解决方案

def check_line_segment_circle_intersection(line, point, radious):
    """ Checks whether a point intersects with a line defined by two points.

    A `point` is list with two values: [2, 3]

    A `line` is list with two points: [point1, point2]

    """
    line_distance = distance(line[0], line[1])
    distance_start_to_point = distance(line[0], point)
    distance_end_to_point = distance(line[1], point)

    if (distance_start_to_point <= radious or distance_end_to_point <= radious):
        return True

    # angle between line and point with law of cosines
    numerator = (math.pow(distance_start_to_point, 2)
                 + math.pow(line_distance, 2)
                 - math.pow(distance_end_to_point, 2))
    denominator = 2 * distance_start_to_point * line_distance
    ratio = numerator / denominator
    ratio = ratio if ratio <= 1 else 1  # To account for float errors
    ratio = ratio if ratio >= -1 else -1  # To account for float errors
    angle = math.acos(ratio)

    # distance from the point to the line with sin projection
    distance_line_to_point = math.sin(angle) * distance_start_to_point

    if distance_line_to_point <= radious:
        point_projection_in_line = math.cos(angle) * distance_start_to_point
        # Intersection occurs whent the point projection in the line is less
        # than the line distance and positive
        return point_projection_in_line <= line_distance and point_projection_in_line >= 0
    return False

def distance(point1, point2):
    return math.sqrt(
        math.pow(point1[1] - point2[1], 2) +
        math.pow(point1[0] - point2[0], 2)
    )

采取

E是射线的起点, L是射线的端点, C是你测试的圆心 R是球面的半径

计算: d = L - E(射线方向矢量,从头到尾) f = E - C(从中心球到射线起点的向量)

然后通过…找到交点。 堵塞: P = E + t * d 这是一个参数方程 Px = Ex + tdx Py = Ey + tdy 成 (x - h)2 + (y - k)2 = r2 (h,k) =圆心。

注意:我们在这里将问题简化为2D,我们得到的解决方案也适用于3D

得到:

Expand x2 - 2xh + h2 + y2 - 2yk + k2 - r2 = 0 Plug x = ex + tdx y = ey + tdy ( ex + tdx )2 - 2( ex + tdx )h + h2 + ( ey + tdy )2 - 2( ey + tdy )k + k2 - r2 = 0 Explode ex2 + 2extdx + t2dx2 - 2exh - 2tdxh + h2 + ey2 + 2eytdy + t2dy2 - 2eyk - 2tdyk + k2 - r2 = 0 Group t2( dx2 + dy2 ) + 2t( exdx + eydy - dxh - dyk ) + ex2 + ey2 - 2exh - 2eyk + h2 + k2 - r2 = 0 Finally, t2( d · d ) + 2t( e · d - d · c ) + e · e - 2( e · c ) + c · c - r2 = 0 Where d is the vector d and · is the dot product. And then, t2( d · d ) + 2t( d · ( e - c ) ) + ( e - c ) · ( e - c ) - r2 = 0 Letting f = e - c t2( d · d ) + 2t( d · f ) + f · f - r2 = 0

所以我们得到: T2 *(d·d) + 2t*(f·d) + (f·f - r2) = 0

求解二次方程:

float a = d.Dot( d ) ;
float b = 2*f.Dot( d ) ;
float c = f.Dot( f ) - r*r ;

float discriminant = b*b-4*a*c;
if( discriminant < 0 )
{
  // no intersection
}
else
{
  // ray didn't totally miss sphere,
  // so there is a solution to
  // the equation.
  
  discriminant = sqrt( discriminant );

  // either solution may be on or off the ray so need to test both
  // t1 is always the smaller value, because BOTH discriminant and
  // a are nonnegative.
  float t1 = (-b - discriminant)/(2*a);
  float t2 = (-b + discriminant)/(2*a);

  // 3x HIT cases:
  //          -o->             --|-->  |            |  --|->
  // Impale(t1 hit,t2 hit), Poke(t1 hit,t2>1), ExitWound(t1<0, t2 hit), 

  // 3x MISS cases:
  //       ->  o                     o ->              | -> |
  // FallShort (t1>1,t2>1), Past (t1<0,t2<0), CompletelyInside(t1<0, t2>1)
  
  if( t1 >= 0 && t1 <= 1 )
  {
    // t1 is the intersection, and it's closer than t2
    // (since t1 uses -b - discriminant)
    // Impale, Poke
    return true ;
  }

  // here t1 didn't intersect so we are either started
  // inside the sphere or completely past it
  if( t2 >= 0 && t2 <= 1 )
  {
    // ExitWound
    return true ;
  }
  
  // no intn: FallShort, Past, CompletelyInside
  return false ;
}

我根据chmike给出的答案为iOS创建了这个函数

+ (NSArray *)intersectionPointsOfCircleWithCenter:(CGPoint)center withRadius:(float)radius toLinePoint1:(CGPoint)p1 andLinePoint2:(CGPoint)p2
{
    NSMutableArray *intersectionPoints = [NSMutableArray array];

    float Ax = p1.x;
    float Ay = p1.y;
    float Bx = p2.x;
    float By = p2.y;
    float Cx = center.x;
    float Cy = center.y;
    float R = radius;


    // compute the euclidean distance between A and B
    float LAB = sqrt( pow(Bx-Ax, 2)+pow(By-Ay, 2) );

    // compute the direction vector D from A to B
    float Dx = (Bx-Ax)/LAB;
    float Dy = (By-Ay)/LAB;

    // Now the line equation is x = Dx*t + Ax, y = Dy*t + Ay with 0 <= t <= 1.

    // compute the value t of the closest point to the circle center (Cx, Cy)
    float t = Dx*(Cx-Ax) + Dy*(Cy-Ay);

    // This is the projection of C on the line from A to B.

    // compute the coordinates of the point E on line and closest to C
    float Ex = t*Dx+Ax;
    float Ey = t*Dy+Ay;

    // compute the euclidean distance from E to C
    float LEC = sqrt( pow(Ex-Cx, 2)+ pow(Ey-Cy, 2) );

    // test if the line intersects the circle
    if( LEC < R )
    {
        // compute distance from t to circle intersection point
        float dt = sqrt( pow(R, 2) - pow(LEC,2) );

        // compute first intersection point
        float Fx = (t-dt)*Dx + Ax;
        float Fy = (t-dt)*Dy + Ay;

        // compute second intersection point
        float Gx = (t+dt)*Dx + Ax;
        float Gy = (t+dt)*Dy + Ay;

        [intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Fx, Fy)]];
        [intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Gx, Gy)]];
    }

    // else test if the line is tangent to circle
    else if( LEC == R ) {
        // tangent point to circle is E
        [intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Ex, Ey)]];
    }
    else {
        // line doesn't touch circle
    }

    return intersectionPoints;
}

另一种方法使用三角形ABC面积公式。交点检验比投影法简单高效,但求交点坐标需要更多的工作。至少它会被推迟到需要的时候。

三角形面积的计算公式为:area = bh/2

b是底长,h是高。我们选择线段AB作为底,使h是圆心C到直线的最短距离。

因为三角形的面积也可以用向量点积来计算,所以我们可以确定h。

// compute the triangle area times 2 (area = area2/2)
area2 = abs( (Bx-Ax)*(Cy-Ay) - (Cx-Ax)(By-Ay) )

// compute the AB segment length
LAB = sqrt( (Bx-Ax)² + (By-Ay)² )

// compute the triangle height
h = area2/LAB

// if the line intersects the circle
if( h < R )
{
    ...
}        

更新1:

您可以通过使用这里描述的快速平方根倒数计算来优化代码,以获得1/LAB的良好近似值。

计算交点并不难。开始了

// compute the line AB direction vector components
Dx = (Bx-Ax)/LAB
Dy = (By-Ay)/LAB

// compute the distance from A toward B of closest point to C
t = Dx*(Cx-Ax) + Dy*(Cy-Ay)

// t should be equal to sqrt( (Cx-Ax)² + (Cy-Ay)² - h² )

// compute the intersection point distance from t
dt = sqrt( R² - h² )

// compute first intersection point coordinate
Ex = Ax + (t-dt)*Dx
Ey = Ay + (t-dt)*Dy

// compute second intersection point coordinate
Fx = Ax + (t+dt)*Dx
Fy = Ay + (t+dt)*Dy

如果h = R,则直线AB与圆相切,且值dt = 0, E = F。点的坐标为E和F的坐标。

如果在应用程序中出现这种情况,您应该检查A与B是否不同,并且段长度不为空。