我有一条从a到B的直线和一个半径为R的圆。

用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?


当前回答

我根据chmike给出的答案为iOS创建了这个函数

+ (NSArray *)intersectionPointsOfCircleWithCenter:(CGPoint)center withRadius:(float)radius toLinePoint1:(CGPoint)p1 andLinePoint2:(CGPoint)p2
{
    NSMutableArray *intersectionPoints = [NSMutableArray array];

    float Ax = p1.x;
    float Ay = p1.y;
    float Bx = p2.x;
    float By = p2.y;
    float Cx = center.x;
    float Cy = center.y;
    float R = radius;


    // compute the euclidean distance between A and B
    float LAB = sqrt( pow(Bx-Ax, 2)+pow(By-Ay, 2) );

    // compute the direction vector D from A to B
    float Dx = (Bx-Ax)/LAB;
    float Dy = (By-Ay)/LAB;

    // Now the line equation is x = Dx*t + Ax, y = Dy*t + Ay with 0 <= t <= 1.

    // compute the value t of the closest point to the circle center (Cx, Cy)
    float t = Dx*(Cx-Ax) + Dy*(Cy-Ay);

    // This is the projection of C on the line from A to B.

    // compute the coordinates of the point E on line and closest to C
    float Ex = t*Dx+Ax;
    float Ey = t*Dy+Ay;

    // compute the euclidean distance from E to C
    float LEC = sqrt( pow(Ex-Cx, 2)+ pow(Ey-Cy, 2) );

    // test if the line intersects the circle
    if( LEC < R )
    {
        // compute distance from t to circle intersection point
        float dt = sqrt( pow(R, 2) - pow(LEC,2) );

        // compute first intersection point
        float Fx = (t-dt)*Dx + Ax;
        float Fy = (t-dt)*Dy + Ay;

        // compute second intersection point
        float Gx = (t+dt)*Dx + Ax;
        float Gy = (t+dt)*Dy + Ay;

        [intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Fx, Fy)]];
        [intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Gx, Gy)]];
    }

    // else test if the line is tangent to circle
    else if( LEC == R ) {
        // tangent point to circle is E
        [intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Ex, Ey)]];
    }
    else {
        // line doesn't touch circle
    }

    return intersectionPoints;
}

其他回答

采取

E是射线的起点, L是射线的端点, C是你测试的圆心 R是球面的半径

计算: d = L - E(射线方向矢量,从头到尾) f = E - C(从中心球到射线起点的向量)

然后通过…找到交点。 堵塞: P = E + t * d 这是一个参数方程 Px = Ex + tdx Py = Ey + tdy 成 (x - h)2 + (y - k)2 = r2 (h,k) =圆心。

注意:我们在这里将问题简化为2D,我们得到的解决方案也适用于3D

得到:

Expand x2 - 2xh + h2 + y2 - 2yk + k2 - r2 = 0 Plug x = ex + tdx y = ey + tdy ( ex + tdx )2 - 2( ex + tdx )h + h2 + ( ey + tdy )2 - 2( ey + tdy )k + k2 - r2 = 0 Explode ex2 + 2extdx + t2dx2 - 2exh - 2tdxh + h2 + ey2 + 2eytdy + t2dy2 - 2eyk - 2tdyk + k2 - r2 = 0 Group t2( dx2 + dy2 ) + 2t( exdx + eydy - dxh - dyk ) + ex2 + ey2 - 2exh - 2eyk + h2 + k2 - r2 = 0 Finally, t2( d · d ) + 2t( e · d - d · c ) + e · e - 2( e · c ) + c · c - r2 = 0 Where d is the vector d and · is the dot product. And then, t2( d · d ) + 2t( d · ( e - c ) ) + ( e - c ) · ( e - c ) - r2 = 0 Letting f = e - c t2( d · d ) + 2t( d · f ) + f · f - r2 = 0

所以我们得到: T2 *(d·d) + 2t*(f·d) + (f·f - r2) = 0

求解二次方程:

float a = d.Dot( d ) ;
float b = 2*f.Dot( d ) ;
float c = f.Dot( f ) - r*r ;

float discriminant = b*b-4*a*c;
if( discriminant < 0 )
{
  // no intersection
}
else
{
  // ray didn't totally miss sphere,
  // so there is a solution to
  // the equation.
  
  discriminant = sqrt( discriminant );

  // either solution may be on or off the ray so need to test both
  // t1 is always the smaller value, because BOTH discriminant and
  // a are nonnegative.
  float t1 = (-b - discriminant)/(2*a);
  float t2 = (-b + discriminant)/(2*a);

  // 3x HIT cases:
  //          -o->             --|-->  |            |  --|->
  // Impale(t1 hit,t2 hit), Poke(t1 hit,t2>1), ExitWound(t1<0, t2 hit), 

  // 3x MISS cases:
  //       ->  o                     o ->              | -> |
  // FallShort (t1>1,t2>1), Past (t1<0,t2<0), CompletelyInside(t1<0, t2>1)
  
  if( t1 >= 0 && t1 <= 1 )
  {
    // t1 is the intersection, and it's closer than t2
    // (since t1 uses -b - discriminant)
    // Impale, Poke
    return true ;
  }

  // here t1 didn't intersect so we are either started
  // inside the sphere or completely past it
  if( t2 >= 0 && t2 <= 1 )
  {
    // ExitWound
    return true ;
  }
  
  // no intn: FallShort, Past, CompletelyInside
  return false ;
}

好吧,我不会给你代码,但既然你已经标记了这个算法,我认为这对你来说无关紧要。 首先,你要得到一个垂直于这条直线的向量。

y = ax + c是一个未知变量c是未知变量 为了解决这个问题,计算直线经过圆心时的值。

也就是说, 将圆心的位置代入直线方程,解出c。 然后计算原直线与其法线的交点。

这样就能得到直线上离圆最近的点。 计算该点到圆中心之间的距离(使用矢量的大小)。 如果这个小于圆的半径,看,我们有一个交点!

这里是一个用golang写的解决方案。这个方法和这里发布的其他一些答案类似,但不完全相同。它易于实现,并已经过测试。以下是步骤:

Translate coordinates so that the circle is at the origin. Express the line segment as parametrized functions of t for both the x and y coordinates. If t is 0, the function's values are one end point of the segment, and if t is 1, the function's values are the other end point. Solve, if possible, the quadratic equation resulting from constraining values of t that produce x, y coordinates with distances from the origin equal to the circle's radius. Throw out solutions where t is < 0 or > 1 ( <= 0 or >= 1 for an open segment). Those points are not contained in the segment. Translate back to original coordinates.

这里导出了二次曲线的A、B和C的值,其中(n-et)和(m-dt)分别是直线x坐标和y坐标的方程。R是圆的半径。

(n-et)(n-et) + (m-dt)(m-dt) = rr
nn - 2etn + etet + mm - 2mdt + dtdt = rr
(ee+dd)tt - 2(en + dm)t + nn + mm - rr = 0

因此A = ee+dd, B = - 2(en + dm), C = nn + mm - rr。

下面是函数的golang代码:

package geom

import (
    "math"
)

// SegmentCircleIntersection return points of intersection between a circle and
// a line segment. The Boolean intersects returns true if one or
// more solutions exist. If only one solution exists, 
// x1 == x2 and y1 == y2.
// s1x and s1y are coordinates for one end point of the segment, and
// s2x and s2y are coordinates for the other end of the segment.
// cx and cy are the coordinates of the center of the circle and
// r is the radius of the circle.
func SegmentCircleIntersection(s1x, s1y, s2x, s2y, cx, cy, r float64) (x1, y1, x2, y2 float64, intersects bool) {
    // (n-et) and (m-dt) are expressions for the x and y coordinates
    // of a parameterized line in coordinates whose origin is the
    // center of the circle.
    // When t = 0, (n-et) == s1x - cx and (m-dt) == s1y - cy
    // When t = 1, (n-et) == s2x - cx and (m-dt) == s2y - cy.
    n := s2x - cx
    m := s2y - cy

    e := s2x - s1x
    d := s2y - s1y

    // lineFunc checks if the  t parameter is in the segment and if so
    // calculates the line point in the unshifted coordinates (adds back
    // cx and cy.
    lineFunc := func(t float64) (x, y float64, inBounds bool) {
        inBounds = t >= 0 && t <= 1 // Check bounds on closed segment
        // To check bounds for an open segment use t > 0 && t < 1
        if inBounds { // Calc coords for point in segment
            x = n - e*t + cx
            y = m - d*t + cy
        }
        return
    }

    // Since we want the points on the line distance r from the origin,
    // (n-et)(n-et) + (m-dt)(m-dt) = rr.
    // Expanding and collecting terms yeilds the following quadratic equation:
    A, B, C := e*e+d*d, -2*(e*n+m*d), n*n+m*m-r*r

    D := B*B - 4*A*C // discriminant of quadratic
    if D < 0 {
        return // No solution
    }
    D = math.Sqrt(D)

    var p1In, p2In bool
    x1, y1, p1In = lineFunc((-B + D) / (2 * A)) // First root
    if D == 0.0 {
        intersects = p1In
        x2, y2 = x1, y1
        return // Only possible solution, quadratic has one root.
    }

    x2, y2, p2In = lineFunc((-B - D) / (2 * A)) // Second root

    intersects = p1In || p2In
    if p1In == false { // Only x2, y2 may be valid solutions
        x1, y1 = x2, y2
    } else if p2In == false { // Only x1, y1 are valid solutions
        x2, y2 = x1, y1
    }
    return
}

我用这个函数进行了测试,确认解点在线段内和圆上。它创建了一个测试段,并围绕给定的圆进行扫描:

package geom_test

import (
    "testing"

    . "**put your package path here**"
)

func CheckEpsilon(t *testing.T, v, epsilon float64, message string) {
    if v > epsilon || v < -epsilon {
        t.Error(message, v, epsilon)
        t.FailNow()
    }
}

func TestSegmentCircleIntersection(t *testing.T) {
    epsilon := 1e-10      // Something smallish
    x1, y1 := 5.0, 2.0    // segment end point 1
    x2, y2 := 50.0, 30.0  // segment end point 2
    cx, cy := 100.0, 90.0 // center of circle
    r := 80.0

    segx, segy := x2-x1, y2-y1

    testCntr, solutionCntr := 0, 0

    for i := -100; i < 100; i++ {
        for j := -100; j < 100; j++ {
            testCntr++
            s1x, s2x := x1+float64(i), x2+float64(i)
            s1y, s2y := y1+float64(j), y2+float64(j)

            sc1x, sc1y := s1x-cx, s1y-cy
            seg1Inside := sc1x*sc1x+sc1y*sc1y < r*r
            sc2x, sc2y := s2x-cx, s2y-cy
            seg2Inside := sc2x*sc2x+sc2y*sc2y < r*r

            p1x, p1y, p2x, p2y, intersects := SegmentCircleIntersection(s1x, s1y, s2x, s2y, cx, cy, r)

            if intersects {
                solutionCntr++
                //Check if points are on circle
                c1x, c1y := p1x-cx, p1y-cy
                deltaLen1 := (c1x*c1x + c1y*c1y) - r*r
                CheckEpsilon(t, deltaLen1, epsilon, "p1 not on circle")

                c2x, c2y := p2x-cx, p2y-cy
                deltaLen2 := (c2x*c2x + c2y*c2y) - r*r
                CheckEpsilon(t, deltaLen2, epsilon, "p2 not on circle")

                // Check if points are on the line through the line segment
                // "cross product" of vector from a segment point to the point
                // and the vector for the segment should be near zero
                vp1x, vp1y := p1x-s1x, p1y-s1y
                crossProd1 := vp1x*segy - vp1y*segx
                CheckEpsilon(t, crossProd1, epsilon, "p1 not on line ")

                vp2x, vp2y := p2x-s1x, p2y-s1y
                crossProd2 := vp2x*segy - vp2y*segx
                CheckEpsilon(t, crossProd2, epsilon, "p2 not on line ")

                // Check if point is between points s1 and s2 on line
                // This means the sign of the dot prod of the segment vector
                // and point to segment end point vectors are opposite for
                // either end.
                wp1x, wp1y := p1x-s2x, p1y-s2y
                dp1v := vp1x*segx + vp1y*segy
                dp1w := wp1x*segx + wp1y*segy
                if (dp1v < 0 && dp1w < 0) || (dp1v > 0 && dp1w > 0) {
                    t.Error("point not contained in segment ", dp1v, dp1w)
                    t.FailNow()
                }

                wp2x, wp2y := p2x-s2x, p2y-s2y
                dp2v := vp2x*segx + vp2y*segy
                dp2w := wp2x*segx + wp2y*segy
                if (dp2v < 0 && dp2w < 0) || (dp2v > 0 && dp2w > 0) {
                    t.Error("point not contained in segment ", dp2v, dp2w)
                    t.FailNow()
                }

                if s1x == s2x && s2y == s1y { //Only one solution
                    // Test that one end of the segment is withing the radius of the circle
                    // and one is not
                    if seg1Inside && seg2Inside {
                        t.Error("Only one solution but both line segment ends inside")
                        t.FailNow()
                    }
                    if !seg1Inside && !seg2Inside {
                        t.Error("Only one solution but both line segment ends outside")
                        t.FailNow()
                    }

                }
            } else { // No intersection, check if both points outside or inside
                if (seg1Inside && !seg2Inside) || (!seg1Inside && seg2Inside) {
                    t.Error("No solution but only one point in radius of circle")
                    t.FailNow()
                }
            }
        }
    }
    t.Log("Tested ", testCntr, " examples and found ", solutionCntr, " solutions.")
}

下面是测试的输出:

=== RUN   TestSegmentCircleIntersection
--- PASS: TestSegmentCircleIntersection (0.00s)
    geom_test.go:105: Tested  40000  examples and found  7343  solutions.

最后,该方法很容易扩展到射线从一点开始,经过另一点并延伸到无穷远的情况,只需测试t > 0或t < 1,而不是两者都测试。

虽然我认为使用线圆交点,然后检查交点是否在端点之间更好,可能更便宜,但我想添加这个更直观的解决方案。

我喜欢把这个问题想象成“香肠上的点问题”,在不改变算法的情况下,它可以在任何维度上工作。 这个解找不到交点。

以下是我想到的:

(我使用“小于”,但“小于或等于”也可以使用,这取决于我们测试的内容。)

确保Circle_Point小于到无限线的半径距离。(这里使用最喜欢的方法)。 计算从两个Segment_Points到Circle_Point的距离。 测试较大的Circle_Point-Segment_Point距离是否小于根号(Segment_Length^2+Radius^2)。 (这是从一个分段点到一个理论点的距离,也就是从另一个分段点到无限线(直角)的半径距离。见图片)。

3 t。如果为true: Circle_Point在sausage内部。 3 f。如果为false:如果较小的Circle_Point- segment_point距离小于Radius,则Circle_Point在sausage内部。

图片:最粗的线段是选定的线段,没有示例圆。有点粗糙,有些像素有点不对。

function boolean pointInSausage(sp1,sp2,r,c) {
  if ( !(pointLineDist(c,sp1,sp2) < r) ) {
    return false;
  }
  double a = dist(sp1,c);  
  double b = dist(sp2,c);
  double l;
  double s;
  if (a>b) {
    l = a;
    s = b;
  } else {
    l = b;
    s = a;
  }
  double segLength = dist(sp1,sp2);
  if ( l < sqrt(segLength*segLength+r*r) ) {
    return true;
  }
  return s < r;
}  

如果发现任何问题,告诉我,我会编辑或撤回。

另一种解决方案,首先考虑不关心碰撞位置的情况。请注意,这个特定的函数是在假设xB和yB为向量输入的情况下构建的,但如果情况并非如此,则可以轻松修改。变量名在函数的开头定义

#Line segment points (A0, Af) defined by xA0, yA0, xAf, yAf; circle center denoted by xB, yB; rB=radius of circle, rA = radius of point (set to zero for your application)
def staticCollision_f(xA0, yA0, xAf, yAf, rA, xB, yB, rB): #note potential speed up here by casting all variables to same type and/or using Cython
    
    #Build equations of a line for linear agents (convert y = mx + b to ax + by + c = 0 means that a = -m, b = 1, c = -b
    m_v = (yAf - yA0) / (xAf - xA0)
    b_v = yAf - m_v * xAf
    rEff = rA + rB #radii are added since we are considering the agent path as a thin line

    #Check if points (circles) are within line segment (find center of line segment and check if circle is within radius of this point)
    segmentMask = np.sqrt( (yB - (yA0+yAf)/2)**2 + (xB - (xA0+xAf)/2)**2 ) < np.sqrt( (yAf - yA0)**2 + (xAf - xA0)**2 ) / 2 + rEff

    #Calculate perpendicular distance between line and a point
    dist_v = np.abs(-m_v * xB + yB - b_v) / np.sqrt(m_v**2 + 1)
    collisionMask = (dist_v < rEff) & segmentMask

    #return True if collision is detected
    return collisionMask, collisionMask.any()

如果您需要碰撞的位置,您可以使用这个站点上详细介绍的方法,并将其中一个代理的速度设置为零。这种方法也适用于矢量输入:http://twobitcoder.blogspot.com/2010/04/circle-collision-detection.html