我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?

喜欢的东西:

if A>0.4 then if B<0.2 then if C>0.8 then class='X'

当前回答

因为每个人都很乐于助人,所以我将对Zelazny7和Daniele的漂亮解决方案进行修改。这是针对python 2.7的,使用tab使其更具可读性:

def get_code(tree, feature_names, tabdepth=0):
    left      = tree.tree_.children_left
    right     = tree.tree_.children_right
    threshold = tree.tree_.threshold
    features  = [feature_names[i] for i in tree.tree_.feature]
    value = tree.tree_.value

    def recurse(left, right, threshold, features, node, tabdepth=0):
            if (threshold[node] != -2):
                    print '\t' * tabdepth,
                    print "if ( " + features[node] + " <= " + str(threshold[node]) + " ) {"
                    if left[node] != -1:
                            recurse (left, right, threshold, features,left[node], tabdepth+1)
                    print '\t' * tabdepth,
                    print "} else {"
                    if right[node] != -1:
                            recurse (left, right, threshold, features,right[node], tabdepth+1)
                    print '\t' * tabdepth,
                    print "}"
            else:
                    print '\t' * tabdepth,
                    print "return " + str(value[node])

    recurse(left, right, threshold, features, 0)

其他回答

只需使用sklearn中的函数。像这样的树

from sklearn.tree import export_graphviz
    export_graphviz(tree,
                out_file = "tree.dot",
                feature_names = tree.columns) //or just ["petal length", "petal width"]

然后在项目文件夹中查找文件树。点,复制所有的内容,并粘贴到这里http://www.webgraphviz.com/,并生成您的图形:)

这是基于@paulkernfeld的回答。如果你有一个包含特征的数据框架X和一个包含共振的目标数据框架y,你想知道哪个y值结束于哪个节点(并相应地绘制它),你可以做以下工作:

    def tree_to_code(tree, feature_names):
        from sklearn.tree import _tree
        codelines = []
        codelines.append('def get_cat(X_tmp):\n')
        codelines.append('   catout = []\n')
        codelines.append('   for codelines in range(0,X_tmp.shape[0]):\n')
        codelines.append('      Xin = X_tmp.iloc[codelines]\n')
        tree_ = tree.tree_
        feature_name = [
            feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
            for i in tree_.feature
        ]
        #print "def tree({}):".format(", ".join(feature_names))

        def recurse(node, depth):
            indent = "      " * depth
            if tree_.feature[node] != _tree.TREE_UNDEFINED:
                name = feature_name[node]
                threshold = tree_.threshold[node]
                codelines.append ('{}if Xin["{}"] <= {}:\n'.format(indent, name, threshold))
                recurse(tree_.children_left[node], depth + 1)
                codelines.append( '{}else:  # if Xin["{}"] > {}\n'.format(indent, name, threshold))
                recurse(tree_.children_right[node], depth + 1)
            else:
                codelines.append( '{}mycat = {}\n'.format(indent, node))

        recurse(0, 1)
        codelines.append('      catout.append(mycat)\n')
        codelines.append('   return pd.DataFrame(catout,index=X_tmp.index,columns=["category"])\n')
        codelines.append('node_ids = get_cat(X)\n')
        return codelines
    mycode = tree_to_code(clf,X.columns.values)

    # now execute the function and obtain the dataframe with all nodes
    exec(''.join(mycode))
    node_ids = [int(x[0]) for x in node_ids.values]
    node_ids2 = pd.DataFrame(node_ids)

    print('make plot')
    import matplotlib.cm as cm
    colors = cm.rainbow(np.linspace(0, 1, 1+max( list(set(node_ids)))))
    #plt.figure(figsize=cm2inch(24, 21))
    for i in list(set(node_ids)):
        plt.plot(y[node_ids2.values==i],'o',color=colors[i], label=str(i))  
    mytitle = ['y colored by node']
    plt.title(mytitle ,fontsize=14)
    plt.xlabel('my xlabel')
    plt.ylabel(tagname)
    plt.xticks(rotation=70)       
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.00), shadow=True, ncol=9)
    plt.tight_layout()
    plt.show()
    plt.close 

不是最优雅的版本,但它做到了…

我相信这个答案比这里的其他答案更正确:

from sklearn.tree import _tree

def tree_to_code(tree, feature_names):
    tree_ = tree.tree_
    feature_name = [
        feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
        for i in tree_.feature
    ]
    print "def tree({}):".format(", ".join(feature_names))

    def recurse(node, depth):
        indent = "  " * depth
        if tree_.feature[node] != _tree.TREE_UNDEFINED:
            name = feature_name[node]
            threshold = tree_.threshold[node]
            print "{}if {} <= {}:".format(indent, name, threshold)
            recurse(tree_.children_left[node], depth + 1)
            print "{}else:  # if {} > {}".format(indent, name, threshold)
            recurse(tree_.children_right[node], depth + 1)
        else:
            print "{}return {}".format(indent, tree_.value[node])

    recurse(0, 1)

这将打印出一个有效的Python函数。下面是一个树的输出示例,它试图返回它的输入,一个0到10之间的数字。

def tree(f0):
  if f0 <= 6.0:
    if f0 <= 1.5:
      return [[ 0.]]
    else:  # if f0 > 1.5
      if f0 <= 4.5:
        if f0 <= 3.5:
          return [[ 3.]]
        else:  # if f0 > 3.5
          return [[ 4.]]
      else:  # if f0 > 4.5
        return [[ 5.]]
  else:  # if f0 > 6.0
    if f0 <= 8.5:
      if f0 <= 7.5:
        return [[ 7.]]
      else:  # if f0 > 7.5
        return [[ 8.]]
    else:  # if f0 > 8.5
      return [[ 9.]]

以下是我在其他答案中看到的一些绊脚石:

使用tree_。用阈值== -2来判断节点是否是叶节点不是一个好主意。如果它是一个阈值为-2的真实决策节点呢?相反,你应该看看树。Feature or tree.children_*。 对于tree_中的i,行features = [feature_names[i]。我的sklearn版本崩溃了,因为树。树_。特征为-2(特别是叶节点)。 递归函数中不需要有多个if语句,一个就可以了。

显然,很久以前就有人决定尝试将以下函数添加到官方scikit的树导出函数中(基本上只支持export_graphviz)

def export_dict(tree, feature_names=None, max_depth=None) :
    """Export a decision tree in dict format.

以下是他的全部承诺:

https://github.com/scikit-learn/scikit-learn/blob/79bdc8f711d0af225ed6be9fdb708cea9f98a910/sklearn/tree/export.py

不太确定这条评论发生了什么。但是你也可以尝试使用这个函数。

我认为这为scikit-learn的优秀人员提供了一个严肃的文档需求,以正确地记录sklearn.tree.Tree API,这是一个底层的树结构,DecisionTreeClassifier将其作为属性tree_公开。

现在可以使用export_text了。

from sklearn.tree import export_text

r = export_text(loan_tree, feature_names=(list(X_train.columns)))
print(r)

来自[sklearn][1]的完整示例

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_text
iris = load_iris()
X = iris['data']
y = iris['target']
decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
decision_tree = decision_tree.fit(X, y)
r = export_text(decision_tree, feature_names=iris['feature_names'])
print(r)