我有这样的代码:

good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]

目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。

我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?


当前回答

这里已经有很多解了,但另一种方法是

anims = []
images = [f for f in files if (lambda t: True if f[2].lower() in IMAGE_TYPES else anims.append(t) and False)(f)]

只在列表上迭代一次,看起来更python化,因此对我来说是可读的。

>>> files = [ ('file1.jpg', 33L, '.jpg'), ('file2.avi', 999L, '.avi'), ('file1.bmp', 33L, '.bmp')]
>>> IMAGE_TYPES = ('.jpg','.jpeg','.gif','.bmp','.png')
>>> anims = []
>>> images = [f for f in files if (lambda t: True if f[2].lower() in IMAGE_TYPES else anims.append(t) and False)(f)]
>>> print '\n'.join([str(anims), str(images)])
[('file2.avi', 999L, '.avi')]
[('file1.jpg', 33L, '.jpg'), ('file1.bmp', 33L, '.bmp')]
>>>

其他回答

bad = []
good = [x for x in mylist if x in goodvals or bad.append(x)]

append返回None,所以它可以工作。

下面是惰性迭代器方法:

from itertools import tee

def split_on_condition(seq, condition):
    l1, l2 = tee((condition(item), item) for item in seq)
    return (i for p, i in l1 if p), (i for p, i in l2 if not p)

它对每个项计算一次条件,并返回两个生成器,第一个生成条件为真时序列中的值,另一个生成条件为假时序列中的值。

因为它是惰性的,你可以在任何迭代器上使用它,甚至是无限迭代器:

from itertools import count, islice

def is_prime(n):
    return n > 1 and all(n % i for i in xrange(2, n))

primes, not_primes = split_on_condition(count(), is_prime)
print("First 10 primes", list(islice(primes, 10)))
print("First 10 non-primes", list(islice(not_primes, 10)))

通常情况下,非惰性列表返回方法会更好:

def split_on_condition(seq, condition):
    a, b = [], []
    for item in seq:
        (a if condition(item) else b).append(item)
    return a, b

编辑:对于您更具体的用例,将项目按某些键分割到不同的列表中,这里有一个通用函数:

DROP_VALUE = lambda _:_
def split_by_key(seq, resultmapping, keyfunc, default=DROP_VALUE):
    """Split a sequence into lists based on a key function.

        seq - input sequence
        resultmapping - a dictionary that maps from target lists to keys that go to that list
        keyfunc - function to calculate the key of an input value
        default - the target where items that don't have a corresponding key go, by default they are dropped
    """
    result_lists = dict((key, []) for key in resultmapping)
    appenders = dict((key, result_lists[target].append) for target, keys in resultmapping.items() for key in keys)

    if default is not DROP_VALUE:
        result_lists.setdefault(default, [])
        default_action = result_lists[default].append
    else:
        default_action = DROP_VALUE

    for item in seq:
        appenders.get(keyfunc(item), default_action)(item)

    return result_lists

用法:

def file_extension(f):
    return f[2].lower()

split_files = split_by_key(files, {'images': IMAGE_TYPES}, keyfunc=file_extension, default='anims')
print split_files['images']
print split_files['anims']

如果列表由组和间歇分隔符组成,您可以使用:

def split(items, p):
    groups = [[]]
    for i in items:
        if p(i):
            groups.append([])
        groups[-1].append(i)
    return groups

用法:

split(range(1,11), lambda x: x % 3 == 0)
# gives [[1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

所有提出的解决方案的问题是,它将扫描和应用过滤功能两次。我会做一个简单的小函数,像这样:

def split_into_two_lists(lst, f):
    a = []
    b = []
    for elem in lst:
        if f(elem):
            a.append(elem)
        else:
            b.append(elem)
    return a, b

这样你就不会重复处理任何东西,也不会重复代码。

解决方案

from itertools import tee

def unpack_args(fn):
    return lambda t: fn(*t)

def separate(fn, lx):
    return map(
        unpack_args(
            lambda i, ly: filter(
                lambda el: bool(i) == fn(el),
                ly)),
        enumerate(tee(lx, 2)))

test

[even, odd] = separate(
    lambda x: bool(x % 2),
    [1, 2, 3, 4, 5])
print(list(even) == [2, 4])
print(list(odd) == [1, 3, 5])