我如何在Java中打印一个二叉树,这样输出就像:

   4 
  / \ 
 2   5 

我的节点:

public class Node<A extends Comparable> {
    Node<A> left, right;
    A data;

    public Node(A data){
        this.data = data;
    }
}

当前回答

我为此做了一个改进的算法,可以很好地处理不同大小的节点。它使用行自上而下地打印。

package alg;

import java.util.ArrayList;
import java.util.List;


/**
 * Binary tree printer
 * 
 * @author MightyPork
 */
public class TreePrinter
{
    /** Node that can be printed */
    public interface PrintableNode
    {
        /** Get left child */
        PrintableNode getLeft();


        /** Get right child */
        PrintableNode getRight();


        /** Get text to be printed */
        String getText();
    }


    /**
     * Print a tree
     * 
     * @param root
     *            tree root node
     */
    public static void print(PrintableNode root)
    {
        List<List<String>> lines = new ArrayList<List<String>>();

        List<PrintableNode> level = new ArrayList<PrintableNode>();
        List<PrintableNode> next = new ArrayList<PrintableNode>();

        level.add(root);
        int nn = 1;

        int widest = 0;

        while (nn != 0) {
            List<String> line = new ArrayList<String>();

            nn = 0;

            for (PrintableNode n : level) {
                if (n == null) {
                    line.add(null);

                    next.add(null);
                    next.add(null);
                } else {
                    String aa = n.getText();
                    line.add(aa);
                    if (aa.length() > widest) widest = aa.length();

                    next.add(n.getLeft());
                    next.add(n.getRight());

                    if (n.getLeft() != null) nn++;
                    if (n.getRight() != null) nn++;
                }
            }

            if (widest % 2 == 1) widest++;

            lines.add(line);

            List<PrintableNode> tmp = level;
            level = next;
            next = tmp;
            next.clear();
        }

        int perpiece = lines.get(lines.size() - 1).size() * (widest + 4);
        for (int i = 0; i < lines.size(); i++) {
            List<String> line = lines.get(i);
            int hpw = (int) Math.floor(perpiece / 2f) - 1;

            if (i > 0) {
                for (int j = 0; j < line.size(); j++) {

                    // split node
                    char c = ' ';
                    if (j % 2 == 1) {
                        if (line.get(j - 1) != null) {
                            c = (line.get(j) != null) ? '┴' : '┘';
                        } else {
                            if (j < line.size() && line.get(j) != null) c = '└';
                        }
                    }
                    System.out.print(c);

                    // lines and spaces
                    if (line.get(j) == null) {
                        for (int k = 0; k < perpiece - 1; k++) {
                            System.out.print(" ");
                        }
                    } else {

                        for (int k = 0; k < hpw; k++) {
                            System.out.print(j % 2 == 0 ? " " : "─");
                        }
                        System.out.print(j % 2 == 0 ? "┌" : "┐");
                        for (int k = 0; k < hpw; k++) {
                            System.out.print(j % 2 == 0 ? "─" : " ");
                        }
                    }
                }
                System.out.println();
            }

            // print line of numbers
            for (int j = 0; j < line.size(); j++) {

                String f = line.get(j);
                if (f == null) f = "";
                int gap1 = (int) Math.ceil(perpiece / 2f - f.length() / 2f);
                int gap2 = (int) Math.floor(perpiece / 2f - f.length() / 2f);

                // a number
                for (int k = 0; k < gap1; k++) {
                    System.out.print(" ");
                }
                System.out.print(f);
                for (int k = 0; k < gap2; k++) {
                    System.out.print(" ");
                }
            }
            System.out.println();

            perpiece /= 2;
        }
    }
}

要在树中使用它,让Node类实现PrintableNode。

示例输出:

                                         2952:0                                             
                    ┌───────────────────────┴───────────────────────┐                       
                 1249:-1                                         5866:0                     
        ┌───────────┴───────────┐                       ┌───────────┴───────────┐           
     491:-1                  1572:0                  4786:1                  6190:0         
  ┌─────┘                                               └─────┐           ┌─────┴─────┐     
339:0                                                      5717:0      6061:0      6271:0   

其他回答

我已经创建了简单的二叉树打印机。您可以随心所欲地使用和修改它,但无论如何它都没有优化。我认为这里有很多东西可以改进;)

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class BTreePrinterTest {

    private static Node<Integer> test1() {
        Node<Integer> root = new Node<Integer>(2);
        Node<Integer> n11 = new Node<Integer>(7);
        Node<Integer> n12 = new Node<Integer>(5);
        Node<Integer> n21 = new Node<Integer>(2);
        Node<Integer> n22 = new Node<Integer>(6);
        Node<Integer> n23 = new Node<Integer>(3);
        Node<Integer> n24 = new Node<Integer>(6);
        Node<Integer> n31 = new Node<Integer>(5);
        Node<Integer> n32 = new Node<Integer>(8);
        Node<Integer> n33 = new Node<Integer>(4);
        Node<Integer> n34 = new Node<Integer>(5);
        Node<Integer> n35 = new Node<Integer>(8);
        Node<Integer> n36 = new Node<Integer>(4);
        Node<Integer> n37 = new Node<Integer>(5);
        Node<Integer> n38 = new Node<Integer>(8);

        root.left = n11;
        root.right = n12;

        n11.left = n21;
        n11.right = n22;
        n12.left = n23;
        n12.right = n24;

        n21.left = n31;
        n21.right = n32;
        n22.left = n33;
        n22.right = n34;
        n23.left = n35;
        n23.right = n36;
        n24.left = n37;
        n24.right = n38;

        return root;
    }

    private static Node<Integer> test2() {
        Node<Integer> root = new Node<Integer>(2);
        Node<Integer> n11 = new Node<Integer>(7);
        Node<Integer> n12 = new Node<Integer>(5);
        Node<Integer> n21 = new Node<Integer>(2);
        Node<Integer> n22 = new Node<Integer>(6);
        Node<Integer> n23 = new Node<Integer>(9);
        Node<Integer> n31 = new Node<Integer>(5);
        Node<Integer> n32 = new Node<Integer>(8);
        Node<Integer> n33 = new Node<Integer>(4);

        root.left = n11;
        root.right = n12;

        n11.left = n21;
        n11.right = n22;

        n12.right = n23;
        n22.left = n31;
        n22.right = n32;

        n23.left = n33;

        return root;
    }

    public static void main(String[] args) {

        BTreePrinter.printNode(test1());
        BTreePrinter.printNode(test2());

    }
}

class Node<T extends Comparable<?>> {
    Node<T> left, right;
    T data;

    public Node(T data) {
        this.data = data;
    }
}

class BTreePrinter {

    public static <T extends Comparable<?>> void printNode(Node<T> root) {
        int maxLevel = BTreePrinter.maxLevel(root);

        printNodeInternal(Collections.singletonList(root), 1, maxLevel);
    }

    private static <T extends Comparable<?>> void printNodeInternal(List<Node<T>> nodes, int level, int maxLevel) {
        if (nodes.isEmpty() || BTreePrinter.isAllElementsNull(nodes))
            return;

        int floor = maxLevel - level;
        int endgeLines = (int) Math.pow(2, (Math.max(floor - 1, 0)));
        int firstSpaces = (int) Math.pow(2, (floor)) - 1;
        int betweenSpaces = (int) Math.pow(2, (floor + 1)) - 1;

        BTreePrinter.printWhitespaces(firstSpaces);

        List<Node<T>> newNodes = new ArrayList<Node<T>>();
        for (Node<T> node : nodes) {
            if (node != null) {
                System.out.print(node.data);
                newNodes.add(node.left);
                newNodes.add(node.right);
            } else {
                newNodes.add(null);
                newNodes.add(null);
                System.out.print(" ");
            }

            BTreePrinter.printWhitespaces(betweenSpaces);
        }
        System.out.println("");

        for (int i = 1; i <= endgeLines; i++) {
            for (int j = 0; j < nodes.size(); j++) {
                BTreePrinter.printWhitespaces(firstSpaces - i);
                if (nodes.get(j) == null) {
                    BTreePrinter.printWhitespaces(endgeLines + endgeLines + i + 1);
                    continue;
                }

                if (nodes.get(j).left != null)
                    System.out.print("/");
                else
                    BTreePrinter.printWhitespaces(1);

                BTreePrinter.printWhitespaces(i + i - 1);

                if (nodes.get(j).right != null)
                    System.out.print("\\");
                else
                    BTreePrinter.printWhitespaces(1);

                BTreePrinter.printWhitespaces(endgeLines + endgeLines - i);
            }

            System.out.println("");
        }

        printNodeInternal(newNodes, level + 1, maxLevel);
    }

    private static void printWhitespaces(int count) {
        for (int i = 0; i < count; i++)
            System.out.print(" ");
    }

    private static <T extends Comparable<?>> int maxLevel(Node<T> node) {
        if (node == null)
            return 0;

        return Math.max(BTreePrinter.maxLevel(node.left), BTreePrinter.maxLevel(node.right)) + 1;
    }

    private static <T> boolean isAllElementsNull(List<T> list) {
        for (Object object : list) {
            if (object != null)
                return false;
        }

        return true;
    }

}

输出1:

         2               
        / \       
       /   \      
      /     \     
     /       \    
     7       5       
    / \     / \   
   /   \   /   \  
   2   6   3   6   
  / \ / \ / \ / \ 
  5 8 4 5 8 4 5 8 

输出2:

       2               
      / \       
     /   \      
    /     \     
   /       \    
   7       5       
  / \       \   
 /   \       \  
 2   6       9   
    / \     /   
    5 8     4   

在控制台打印:

                                                500
                       700                                             300   
    200                                   400                                                                                          

简单代码:

public int getHeight()
    {
        if(rootNode == null) return -1;
        return getHeight(rootNode);
    }

    private int getHeight(Node node)
    {
        if(node == null) return -1;

        return Math.max(getHeight(node.left), getHeight(node.right)) + 1;
    }

    public void printBinaryTree(Node rootNode)
    {
        Queue<Node> rootsQueue = new LinkedList<Node>();
        Queue<Node> levelQueue = new LinkedList<Node>();
        levelQueue.add(rootNode);
        int treeHeight = getHeight();
        int firstNodeGap;
        int internalNodeGap;
        int copyinternalNodeGap;
        while(true)
        {
            System.out.println("");
            internalNodeGap = (int)(Math.pow(2, treeHeight + 1) -1);  
            copyinternalNodeGap = internalNodeGap;
            firstNodeGap = internalNodeGap/2;

            boolean levelFirstNode = true;

            while(!levelQueue.isEmpty())
            {
                internalNodeGap = copyinternalNodeGap;
                Node currNode = levelQueue.poll();
                if(currNode != null)
                {
                    if(levelFirstNode)
                    {
                        while(firstNodeGap > 0)
                        {
                            System.out.format("%s", "   ");
                            firstNodeGap--; 
                        }
                        levelFirstNode =false;
                    }
                    else
                    {
                        while(internalNodeGap>0)
                        {
                            internalNodeGap--;
                            System.out.format("%s", "   ");
                        }
                    }
                    System.out.format("%3d",currNode.data);
                    rootsQueue.add(currNode);
                }
            }

            --treeHeight;

            while(!rootsQueue.isEmpty())
            {
                Node currNode = rootsQueue.poll();
                if(currNode != null)
                {
                    levelQueue.add(currNode.left);
                    levelQueue.add(currNode.right);
                }
            }

            if(levelQueue.isEmpty()) break;
        }

    }

你的树每一层需要两倍的距离:

       a
      / \
     /   \
    /     \
   /       \
   b       c
  / \     / \
 /   \   /   \
 d   e   f   g
/ \ / \ / \ / \
h i j k l m n o

你可以将你的树保存在一个数组的数组中,每个数组对应一个深度:

[[a],[b,c],[d,e,f,g],[h,i,j,k,l,m,n,o]]

如果你的树没有满,你需要在数组中包含空值:

       a
      / \
     /   \
    /     \
   /       \
   b       c
  / \     / \
 /   \   /   \
 d   e   f   g
/ \   \ / \   \
h i   k l m   o
[[a],[b,c],[d,e,f,g],[h,i, ,k,l,m, ,o]]

然后你可以遍历数组来打印你的树,根据深度打印第一个元素之前和元素之间的空格,根据下一层数组中对应的元素是否被填充打印行。 如果您的值可以超过一个字符长,您需要在创建数组表示时找到最长的值,并相应地乘以所有宽度和行数。

下面是可视化树的另一种方法:将节点保存为xml文件,然后让浏览器显示层次结构:

class treeNode{
    int key;
    treeNode left;
    treeNode right;

    public treeNode(int key){
        this.key = key;
        left = right = null;
    }

    public void printNode(StringBuilder output, String dir){
        output.append("<node key='" + key + "' dir='" + dir + "'>");
        if(left != null)
            left.printNode(output, "l");
        if(right != null)
            right.printNode(output, "r");
        output.append("</node>");
    }
}

class tree{
    private treeNode treeRoot;

    public tree(int key){
        treeRoot = new treeNode(key);
    }

    public void insert(int key){
        insert(treeRoot, key);
    }

    private treeNode insert(treeNode root, int key){
        if(root == null){
            treeNode child = new treeNode(key);
            return child;
        }

        if(key < root.key)
            root.left = insert(root.left, key);
        else if(key > root.key)
            root.right = insert(root.right, key);

        return root;
    }

    public void saveTreeAsXml(){
        StringBuilder strOutput = new StringBuilder();
        strOutput.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
        treeRoot.printNode(strOutput, "root");
        try {
            PrintWriter writer = new PrintWriter("C:/tree.xml", "UTF-8");
            writer.write(strOutput.toString());
            writer.close();
        }
        catch (FileNotFoundException e){

        }
        catch(UnsupportedEncodingException e){

        }
    }
}

下面是测试它的代码:

    tree t = new tree(1);
    t.insert(10);
    t.insert(5);
    t.insert(4);
    t.insert(20);
    t.insert(40);
    t.insert(30);
    t.insert(80);
    t.insert(60);
    t.insert(50);

    t.saveTreeAsXml();

输出如下所示:

根据VasyaNovikov的回答。改进了一些Java魔术:泛型和函数接口。

/**
 * Print a tree structure in a pretty ASCII fromat.
 * @param prefix Currnet previx. Use "" in initial call!
 * @param node The current node. Pass the root node of your tree in initial call.
 * @param getChildrenFunc A {@link Function} that returns the children of a given node.
 * @param isTail Is node the last of its sibblings. Use true in initial call. (This is needed for pretty printing.)
 * @param <T> The type of your nodes. Anything that has a toString can be used.
 */
private <T> void printTreeRec(String prefix, T node, Function<T, List<T>> getChildrenFunc, boolean isTail) {
    String nodeName = node.toString();
    String nodeConnection = isTail ? "└── " : "├── ";
    log.debug(prefix + nodeConnection + nodeName);
    List<T> children = getChildrenFunc.apply(node);
    for (int i = 0; i < children.size(); i++) {
        String newPrefix = prefix + (isTail ? "    " : "│   ");
        printTreeRec(newPrefix, children.get(i), getChildrenFunc, i == children.size()-1);
    }
}

初始调用示例:

Function<ChecksumModel, List<ChecksumModel>> getChildrenFunc = node -> getChildrenOf(node)
printTreeRec("", rootNode, getChildrenFunc, true);

将输出如下内容

└── rootNode
    ├── childNode1
    ├── childNode2
    │   ├── childNode2.1
    │   ├── childNode2.2
    │   └── childNode2.3
    ├── childNode3
    └── childNode4