我如何在Java中打印一个二叉树,这样输出就像:

   4 
  / \ 
 2   5 

我的节点:

public class Node<A extends Comparable> {
    Node<A> left, right;
    A data;

    public Node(A data){
        this.data = data;
    }
}

当前回答

using map...
{
Map<Integer,String> m = new LinkedHashMap<>();

         tn.printNodeWithLvl(node,l,m);

        for(Entry<Integer, String> map :m.entrySet()) {
            System.out.println(map.getValue());
        }
then....method


   private  void printNodeWithLvl(Node node,int l,Map<Integer,String> m) {
       if(node==null) {
           return;
       }
      if(m.containsKey(l)) {
          m.put(l, new StringBuilder(m.get(l)).append(node.value).toString());
      }else {
          m.put(l, node.value+"");
      }
      l++;
      printNodeWithLvl( node.left,l,m);
      printNodeWithLvl(node.right,l,m);

    }
}

其他回答

你的树每一层需要两倍的距离:

       a
      / \
     /   \
    /     \
   /       \
   b       c
  / \     / \
 /   \   /   \
 d   e   f   g
/ \ / \ / \ / \
h i j k l m n o

你可以将你的树保存在一个数组的数组中,每个数组对应一个深度:

[[a],[b,c],[d,e,f,g],[h,i,j,k,l,m,n,o]]

如果你的树没有满,你需要在数组中包含空值:

       a
      / \
     /   \
    /     \
   /       \
   b       c
  / \     / \
 /   \   /   \
 d   e   f   g
/ \   \ / \   \
h i   k l m   o
[[a],[b,c],[d,e,f,g],[h,i, ,k,l,m, ,o]]

然后你可以遍历数组来打印你的树,根据深度打印第一个元素之前和元素之间的空格,根据下一层数组中对应的元素是否被填充打印行。 如果您的值可以超过一个字符长,您需要在创建数组表示时找到最长的值,并相应地乘以所有宽度和行数。

我已经创建了简单的二叉树打印机。您可以随心所欲地使用和修改它,但无论如何它都没有优化。我认为这里有很多东西可以改进;)

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class BTreePrinterTest {

    private static Node<Integer> test1() {
        Node<Integer> root = new Node<Integer>(2);
        Node<Integer> n11 = new Node<Integer>(7);
        Node<Integer> n12 = new Node<Integer>(5);
        Node<Integer> n21 = new Node<Integer>(2);
        Node<Integer> n22 = new Node<Integer>(6);
        Node<Integer> n23 = new Node<Integer>(3);
        Node<Integer> n24 = new Node<Integer>(6);
        Node<Integer> n31 = new Node<Integer>(5);
        Node<Integer> n32 = new Node<Integer>(8);
        Node<Integer> n33 = new Node<Integer>(4);
        Node<Integer> n34 = new Node<Integer>(5);
        Node<Integer> n35 = new Node<Integer>(8);
        Node<Integer> n36 = new Node<Integer>(4);
        Node<Integer> n37 = new Node<Integer>(5);
        Node<Integer> n38 = new Node<Integer>(8);

        root.left = n11;
        root.right = n12;

        n11.left = n21;
        n11.right = n22;
        n12.left = n23;
        n12.right = n24;

        n21.left = n31;
        n21.right = n32;
        n22.left = n33;
        n22.right = n34;
        n23.left = n35;
        n23.right = n36;
        n24.left = n37;
        n24.right = n38;

        return root;
    }

    private static Node<Integer> test2() {
        Node<Integer> root = new Node<Integer>(2);
        Node<Integer> n11 = new Node<Integer>(7);
        Node<Integer> n12 = new Node<Integer>(5);
        Node<Integer> n21 = new Node<Integer>(2);
        Node<Integer> n22 = new Node<Integer>(6);
        Node<Integer> n23 = new Node<Integer>(9);
        Node<Integer> n31 = new Node<Integer>(5);
        Node<Integer> n32 = new Node<Integer>(8);
        Node<Integer> n33 = new Node<Integer>(4);

        root.left = n11;
        root.right = n12;

        n11.left = n21;
        n11.right = n22;

        n12.right = n23;
        n22.left = n31;
        n22.right = n32;

        n23.left = n33;

        return root;
    }

    public static void main(String[] args) {

        BTreePrinter.printNode(test1());
        BTreePrinter.printNode(test2());

    }
}

class Node<T extends Comparable<?>> {
    Node<T> left, right;
    T data;

    public Node(T data) {
        this.data = data;
    }
}

class BTreePrinter {

    public static <T extends Comparable<?>> void printNode(Node<T> root) {
        int maxLevel = BTreePrinter.maxLevel(root);

        printNodeInternal(Collections.singletonList(root), 1, maxLevel);
    }

    private static <T extends Comparable<?>> void printNodeInternal(List<Node<T>> nodes, int level, int maxLevel) {
        if (nodes.isEmpty() || BTreePrinter.isAllElementsNull(nodes))
            return;

        int floor = maxLevel - level;
        int endgeLines = (int) Math.pow(2, (Math.max(floor - 1, 0)));
        int firstSpaces = (int) Math.pow(2, (floor)) - 1;
        int betweenSpaces = (int) Math.pow(2, (floor + 1)) - 1;

        BTreePrinter.printWhitespaces(firstSpaces);

        List<Node<T>> newNodes = new ArrayList<Node<T>>();
        for (Node<T> node : nodes) {
            if (node != null) {
                System.out.print(node.data);
                newNodes.add(node.left);
                newNodes.add(node.right);
            } else {
                newNodes.add(null);
                newNodes.add(null);
                System.out.print(" ");
            }

            BTreePrinter.printWhitespaces(betweenSpaces);
        }
        System.out.println("");

        for (int i = 1; i <= endgeLines; i++) {
            for (int j = 0; j < nodes.size(); j++) {
                BTreePrinter.printWhitespaces(firstSpaces - i);
                if (nodes.get(j) == null) {
                    BTreePrinter.printWhitespaces(endgeLines + endgeLines + i + 1);
                    continue;
                }

                if (nodes.get(j).left != null)
                    System.out.print("/");
                else
                    BTreePrinter.printWhitespaces(1);

                BTreePrinter.printWhitespaces(i + i - 1);

                if (nodes.get(j).right != null)
                    System.out.print("\\");
                else
                    BTreePrinter.printWhitespaces(1);

                BTreePrinter.printWhitespaces(endgeLines + endgeLines - i);
            }

            System.out.println("");
        }

        printNodeInternal(newNodes, level + 1, maxLevel);
    }

    private static void printWhitespaces(int count) {
        for (int i = 0; i < count; i++)
            System.out.print(" ");
    }

    private static <T extends Comparable<?>> int maxLevel(Node<T> node) {
        if (node == null)
            return 0;

        return Math.max(BTreePrinter.maxLevel(node.left), BTreePrinter.maxLevel(node.right)) + 1;
    }

    private static <T> boolean isAllElementsNull(List<T> list) {
        for (Object object : list) {
            if (object != null)
                return false;
        }

        return true;
    }

}

输出1:

         2               
        / \       
       /   \      
      /     \     
     /       \    
     7       5       
    / \     / \   
   /   \   /   \  
   2   6   3   6   
  / \ / \ / \ / \ 
  5 8 4 5 8 4 5 8 

输出2:

       2               
      / \       
     /   \      
    /     \     
   /       \    
   7       5       
  / \       \   
 /   \       \  
 2   6       9   
    / \     /   
    5 8     4   

迈克尔。克鲁兹曼,我不得不说,这人不错。这很有用。

然而,上面的方法只适用于个位数:如果您要使用多个数字,结构将会错位,因为您使用的是空格而不是制表符。

至于我后来的代码,我需要更多的数字,所以我自己编写了一个程序。

它现在有一些bug,现在我感觉很懒去纠正它们,但它打印得非常漂亮,节点可以接受更大数量的数字。

这棵树不会像问题提到的那样,但它旋转了270度:)

public static void printBinaryTree(TreeNode root, int level){
    if(root==null)
         return;
    printBinaryTree(root.right, level+1);
    if(level!=0){
        for(int i=0;i<level-1;i++)
            System.out.print("|\t");
        System.out.println("|-------"+root.val);
    }
    else
        System.out.println(root.val);
    printBinaryTree(root.left, level+1);
}    

将此函数与您自己指定的TreeNode一起放置,并保持初始级别为0,并享受!

以下是一些输出示例:

|       |       |-------11
|       |-------10
|       |       |-------9
|-------8
|       |       |-------7
|       |-------6
|       |       |-------5
4
|       |-------3
|-------2
|       |-------1


|       |       |       |-------10
|       |       |-------9
|       |-------8
|       |       |-------7
|-------6
|       |-------5
4
|       |-------3
|-------2
|       |-------1

唯一的问题是延伸的分支;我会尽快解决这个问题,但在此之前你也可以使用它。

改编自Vasya Novikov的答案,使其更二进制,并使用StringBuilder提高效率(在Java中将String对象连接在一起通常效率很低)。

public StringBuilder toString(StringBuilder prefix, boolean isTail, StringBuilder sb) {
    if(right!=null) {
        right.toString(new StringBuilder().append(prefix).append(isTail ? "│   " : "    "), false, sb);
    }
    sb.append(prefix).append(isTail ? "└── " : "┌── ").append(value.toString()).append("\n");
    if(left!=null) {
        left.toString(new StringBuilder().append(prefix).append(isTail ? "    " : "│   "), true, sb);
    }
    return sb;
}

@Override
public String toString() {
    return this.toString(new StringBuilder(), true, new StringBuilder()).toString();
}

输出:

│       ┌── 7
│   ┌── 6
│   │   └── 5
└── 4
    │   ┌── 3
    └── 2
        └── 1
            └── 0

一个Scala解决方案,改编自Vasya Novikov的答案,专门用于二叉树:

/** An immutable Binary Tree. */
case class BTree[T](value: T, left: Option[BTree[T]], right: Option[BTree[T]]) {

  /* Adapted from: http://stackoverflow.com/a/8948691/643684 */
  def pretty: String = {
    def work(tree: BTree[T], prefix: String, isTail: Boolean): String = {
      val (line, bar) = if (isTail) ("└── ", " ") else ("├── ", "│")

      val curr = s"${prefix}${line}${tree.value}"

      val rights = tree.right match {
        case None    => s"${prefix}${bar}   ├── ∅"
        case Some(r) => work(r, s"${prefix}${bar}   ", false)
      }

      val lefts = tree.left match {
        case None    => s"${prefix}${bar}   └── ∅"
        case Some(l) => work(l, s"${prefix}${bar}   ", true)
      }

      s"${curr}\n${rights}\n${lefts}"

    }

    work(this, "", true)
  }
}