我如何在Java中打印一个二叉树,这样输出就像:

   4 
  / \ 
 2   5 

我的节点:

public class Node<A extends Comparable> {
    Node<A> left, right;
    A data;

    public Node(A data){
        this.data = data;
    }
}

当前回答

按行打印[大]树。

输出的例子:

z
├── c
│   ├── a
│   └── b
├── d
├── e
│   └── asdf
└── f

代码:

public class TreeNode {

    final String name;
    final List<TreeNode> children;

    public TreeNode(String name, List<TreeNode> children) {
        this.name = name;
        this.children = children;
    }

    public String toString() {
        StringBuilder buffer = new StringBuilder(50);
        print(buffer, "", "");
        return buffer.toString();
    }

    private void print(StringBuilder buffer, String prefix, String childrenPrefix) {
        buffer.append(prefix);
        buffer.append(name);
        buffer.append('\n');
        for (Iterator<TreeNode> it = children.iterator(); it.hasNext();) {
            TreeNode next = it.next();
            if (it.hasNext()) {
                next.print(buffer, childrenPrefix + "├── ", childrenPrefix + "│   ");
            } else {
                next.print(buffer, childrenPrefix + "└── ", childrenPrefix + "    ");
            }
        }
    }
}

附注:这个答案并不完全关注“二叉”树——相反,它打印了各种类型的树。解决方案的灵感来自linux中的“树”命令。

其他回答

下面是可视化树的另一种方法:将节点保存为xml文件,然后让浏览器显示层次结构:

class treeNode{
    int key;
    treeNode left;
    treeNode right;

    public treeNode(int key){
        this.key = key;
        left = right = null;
    }

    public void printNode(StringBuilder output, String dir){
        output.append("<node key='" + key + "' dir='" + dir + "'>");
        if(left != null)
            left.printNode(output, "l");
        if(right != null)
            right.printNode(output, "r");
        output.append("</node>");
    }
}

class tree{
    private treeNode treeRoot;

    public tree(int key){
        treeRoot = new treeNode(key);
    }

    public void insert(int key){
        insert(treeRoot, key);
    }

    private treeNode insert(treeNode root, int key){
        if(root == null){
            treeNode child = new treeNode(key);
            return child;
        }

        if(key < root.key)
            root.left = insert(root.left, key);
        else if(key > root.key)
            root.right = insert(root.right, key);

        return root;
    }

    public void saveTreeAsXml(){
        StringBuilder strOutput = new StringBuilder();
        strOutput.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
        treeRoot.printNode(strOutput, "root");
        try {
            PrintWriter writer = new PrintWriter("C:/tree.xml", "UTF-8");
            writer.write(strOutput.toString());
            writer.close();
        }
        catch (FileNotFoundException e){

        }
        catch(UnsupportedEncodingException e){

        }
    }
}

下面是测试它的代码:

    tree t = new tree(1);
    t.insert(10);
    t.insert(5);
    t.insert(4);
    t.insert(20);
    t.insert(40);
    t.insert(30);
    t.insert(80);
    t.insert(60);
    t.insert(50);

    t.saveTreeAsXml();

输出如下所示:

你的树每一层需要两倍的距离:

       a
      / \
     /   \
    /     \
   /       \
   b       c
  / \     / \
 /   \   /   \
 d   e   f   g
/ \ / \ / \ / \
h i j k l m n o

你可以将你的树保存在一个数组的数组中,每个数组对应一个深度:

[[a],[b,c],[d,e,f,g],[h,i,j,k,l,m,n,o]]

如果你的树没有满,你需要在数组中包含空值:

       a
      / \
     /   \
    /     \
   /       \
   b       c
  / \     / \
 /   \   /   \
 d   e   f   g
/ \   \ / \   \
h i   k l m   o
[[a],[b,c],[d,e,f,g],[h,i, ,k,l,m, ,o]]

然后你可以遍历数组来打印你的树,根据深度打印第一个元素之前和元素之间的空格,根据下一层数组中对应的元素是否被填充打印行。 如果您的值可以超过一个字符长,您需要在创建数组表示时找到最长的值,并相应地乘以所有宽度和行数。

在控制台打印:

                                                500
                       700                                             300   
    200                                   400                                                                                          

简单代码:

public int getHeight()
    {
        if(rootNode == null) return -1;
        return getHeight(rootNode);
    }

    private int getHeight(Node node)
    {
        if(node == null) return -1;

        return Math.max(getHeight(node.left), getHeight(node.right)) + 1;
    }

    public void printBinaryTree(Node rootNode)
    {
        Queue<Node> rootsQueue = new LinkedList<Node>();
        Queue<Node> levelQueue = new LinkedList<Node>();
        levelQueue.add(rootNode);
        int treeHeight = getHeight();
        int firstNodeGap;
        int internalNodeGap;
        int copyinternalNodeGap;
        while(true)
        {
            System.out.println("");
            internalNodeGap = (int)(Math.pow(2, treeHeight + 1) -1);  
            copyinternalNodeGap = internalNodeGap;
            firstNodeGap = internalNodeGap/2;

            boolean levelFirstNode = true;

            while(!levelQueue.isEmpty())
            {
                internalNodeGap = copyinternalNodeGap;
                Node currNode = levelQueue.poll();
                if(currNode != null)
                {
                    if(levelFirstNode)
                    {
                        while(firstNodeGap > 0)
                        {
                            System.out.format("%s", "   ");
                            firstNodeGap--; 
                        }
                        levelFirstNode =false;
                    }
                    else
                    {
                        while(internalNodeGap>0)
                        {
                            internalNodeGap--;
                            System.out.format("%s", "   ");
                        }
                    }
                    System.out.format("%3d",currNode.data);
                    rootsQueue.add(currNode);
                }
            }

            --treeHeight;

            while(!rootsQueue.isEmpty())
            {
                Node currNode = rootsQueue.poll();
                if(currNode != null)
                {
                    levelQueue.add(currNode.left);
                    levelQueue.add(currNode.right);
                }
            }

            if(levelQueue.isEmpty()) break;
        }

    }

这是水平视图最简单的解决方案。我举了很多例子。很适合我的目的。更新自@ ntin -k的回答。

public void print(String prefix, BTNode n, boolean isLeft) {
    if (n != null) {
        print(prefix + "     ", n.right, false);
        System.out.println (prefix + ("|-- ") + n.data);
        print(prefix + "     ", n.left, true);
    }
}

电话:

bst.print("", bst.root, false);

解决方案:

                         |-- 80
                    |-- 70
               |-- 60
          |-- 50
     |-- 40
|-- 30
     |-- 20
          |-- 10

我已经创建了简单的二叉树打印机。您可以随心所欲地使用和修改它,但无论如何它都没有优化。我认为这里有很多东西可以改进;)

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class BTreePrinterTest {

    private static Node<Integer> test1() {
        Node<Integer> root = new Node<Integer>(2);
        Node<Integer> n11 = new Node<Integer>(7);
        Node<Integer> n12 = new Node<Integer>(5);
        Node<Integer> n21 = new Node<Integer>(2);
        Node<Integer> n22 = new Node<Integer>(6);
        Node<Integer> n23 = new Node<Integer>(3);
        Node<Integer> n24 = new Node<Integer>(6);
        Node<Integer> n31 = new Node<Integer>(5);
        Node<Integer> n32 = new Node<Integer>(8);
        Node<Integer> n33 = new Node<Integer>(4);
        Node<Integer> n34 = new Node<Integer>(5);
        Node<Integer> n35 = new Node<Integer>(8);
        Node<Integer> n36 = new Node<Integer>(4);
        Node<Integer> n37 = new Node<Integer>(5);
        Node<Integer> n38 = new Node<Integer>(8);

        root.left = n11;
        root.right = n12;

        n11.left = n21;
        n11.right = n22;
        n12.left = n23;
        n12.right = n24;

        n21.left = n31;
        n21.right = n32;
        n22.left = n33;
        n22.right = n34;
        n23.left = n35;
        n23.right = n36;
        n24.left = n37;
        n24.right = n38;

        return root;
    }

    private static Node<Integer> test2() {
        Node<Integer> root = new Node<Integer>(2);
        Node<Integer> n11 = new Node<Integer>(7);
        Node<Integer> n12 = new Node<Integer>(5);
        Node<Integer> n21 = new Node<Integer>(2);
        Node<Integer> n22 = new Node<Integer>(6);
        Node<Integer> n23 = new Node<Integer>(9);
        Node<Integer> n31 = new Node<Integer>(5);
        Node<Integer> n32 = new Node<Integer>(8);
        Node<Integer> n33 = new Node<Integer>(4);

        root.left = n11;
        root.right = n12;

        n11.left = n21;
        n11.right = n22;

        n12.right = n23;
        n22.left = n31;
        n22.right = n32;

        n23.left = n33;

        return root;
    }

    public static void main(String[] args) {

        BTreePrinter.printNode(test1());
        BTreePrinter.printNode(test2());

    }
}

class Node<T extends Comparable<?>> {
    Node<T> left, right;
    T data;

    public Node(T data) {
        this.data = data;
    }
}

class BTreePrinter {

    public static <T extends Comparable<?>> void printNode(Node<T> root) {
        int maxLevel = BTreePrinter.maxLevel(root);

        printNodeInternal(Collections.singletonList(root), 1, maxLevel);
    }

    private static <T extends Comparable<?>> void printNodeInternal(List<Node<T>> nodes, int level, int maxLevel) {
        if (nodes.isEmpty() || BTreePrinter.isAllElementsNull(nodes))
            return;

        int floor = maxLevel - level;
        int endgeLines = (int) Math.pow(2, (Math.max(floor - 1, 0)));
        int firstSpaces = (int) Math.pow(2, (floor)) - 1;
        int betweenSpaces = (int) Math.pow(2, (floor + 1)) - 1;

        BTreePrinter.printWhitespaces(firstSpaces);

        List<Node<T>> newNodes = new ArrayList<Node<T>>();
        for (Node<T> node : nodes) {
            if (node != null) {
                System.out.print(node.data);
                newNodes.add(node.left);
                newNodes.add(node.right);
            } else {
                newNodes.add(null);
                newNodes.add(null);
                System.out.print(" ");
            }

            BTreePrinter.printWhitespaces(betweenSpaces);
        }
        System.out.println("");

        for (int i = 1; i <= endgeLines; i++) {
            for (int j = 0; j < nodes.size(); j++) {
                BTreePrinter.printWhitespaces(firstSpaces - i);
                if (nodes.get(j) == null) {
                    BTreePrinter.printWhitespaces(endgeLines + endgeLines + i + 1);
                    continue;
                }

                if (nodes.get(j).left != null)
                    System.out.print("/");
                else
                    BTreePrinter.printWhitespaces(1);

                BTreePrinter.printWhitespaces(i + i - 1);

                if (nodes.get(j).right != null)
                    System.out.print("\\");
                else
                    BTreePrinter.printWhitespaces(1);

                BTreePrinter.printWhitespaces(endgeLines + endgeLines - i);
            }

            System.out.println("");
        }

        printNodeInternal(newNodes, level + 1, maxLevel);
    }

    private static void printWhitespaces(int count) {
        for (int i = 0; i < count; i++)
            System.out.print(" ");
    }

    private static <T extends Comparable<?>> int maxLevel(Node<T> node) {
        if (node == null)
            return 0;

        return Math.max(BTreePrinter.maxLevel(node.left), BTreePrinter.maxLevel(node.right)) + 1;
    }

    private static <T> boolean isAllElementsNull(List<T> list) {
        for (Object object : list) {
            if (object != null)
                return false;
        }

        return true;
    }

}

输出1:

         2               
        / \       
       /   \      
      /     \     
     /       \    
     7       5       
    / \     / \   
   /   \   /   \  
   2   6   3   6   
  / \ / \ / \ / \ 
  5 8 4 5 8 4 5 8 

输出2:

       2               
      / \       
     /   \      
    /     \     
   /       \    
   7       5       
  / \       \   
 /   \       \  
 2   6       9   
    / \     /   
    5 8     4