我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:

df:

A     B   C
1000  10  0.5
765   5   0.35
800   7   0.09

知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?

我想要的输出是:

A     B    C
1     1    1
0.765 0.5  0.7
0.8   0.7  0.18(which is 0.09/0.5)

当前回答

你可能想让一些列被标准化,而其他的列是不变的,比如一些回归任务,数据标签或分类列是不变的,所以我建议你用这种python的方式(它是@shg和@Cina答案的组合):

features_to_normalize = ['A', 'B', 'C']
# could be ['A','B'] 

df[features_to_normalize] = df[features_to_normalize].apply(lambda x:(x-x.min()) / (x.max()-x.min()))

其他回答

使用Pandas的一个简单方法:(这里我想使用均值归一化)

normalized_df=(df-df.mean())/df.std()

使用最小-最大归一化:

normalized_df=(df-df.min())/(df.max()-df.min())

编辑:为了解决一些问题,需要说明Pandas在上面的代码中自动应用列函数。

Pandas默认情况下按列进行归一化。试试下面的代码。

X= pd.read_csv('.\\data.csv')
X = (X-X.min())/(X.max()-X.min())

输出值将在0和1的范围内。

基于这篇文章:https://stats.stackexchange.com/questions/70801/how-to-normalize-data-to-0-1-range

您可以执行以下操作:

def normalize(df):
    result = df.copy()
    for feature_name in df.columns:
        max_value = df[feature_name].max()
        min_value = df[feature_name].min()
        result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value)
    return result

你不需要一直担心你的价值观是积极的还是消极的。这些值应该很好地分布在0和1之间。

def normalize(x):
    try:
        x = x/np.linalg.norm(x,ord=1)
        return x
    except :
        raise
data = pd.DataFrame.apply(data,normalize)

根据pandas的文档,DataFrame结构可以对自身应用操作(函数)。

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)

沿着数据帧的输入轴应用函数。 传递给函数的对象是具有DataFrame的索引(轴=0)或列(轴=1)索引的Series对象。返回类型取决于传递的函数是否聚合,如果DataFrame为空则使用reduce参数。

您可以应用自定义函数来操作DataFrame。

这只是简单的数学。答案应该如下所示。

normed_df = (df - df.min()) / (df.max() - df.min())