我有一个Python脚本,它把一个整数列表作为输入,我需要一次处理四个整数。不幸的是,我无法控制输入,否则我将它作为一个四元素元组列表传入。目前,我以这种方式迭代它:

for i in range(0, len(ints), 4):
    # dummy op for example code
    foo += ints[i] * ints[i + 1] + ints[i + 2] * ints[i + 3]

不过,它看起来很像“C-think”,这让我怀疑有一种更python的方式来处理这种情况。该列表在迭代后被丢弃,因此不需要保留。也许这样会更好?

while ints:
    foo += ints[0] * ints[1] + ints[2] * ints[3]
    ints[0:4] = []

不过,感觉还是不太对。: - /

相关问题:在Python中如何将列表分割成大小均匀的块?


当前回答

下面是我的go works on lists,iter和range…懒洋洋地:

def chunker(it,size):
    rv = [] 
    for i,el in enumerate(it,1) :   
        rv.append(el)
        if i % size == 0 : 
            yield rv
            rv = []
    if rv : yield rv        

几乎变成了一句俏皮话;(

In [95]: list(chunker(range(9),2) )                                                                                                                                          
Out[95]: [[0, 1], [2, 3], [4, 5], [6, 7], [8]]

In [96]: list(chunker([1,2,3,4,5],2) )                                                                                                                                       
Out[96]: [[1, 2], [3, 4], [5]]

In [97]: list(chunker(iter(range(9)),2) )                                                                                                                                    
Out[97]: [[0, 1], [2, 3], [4, 5], [6, 7], [8]]

In [98]: list(chunker(range(9),25) )                                                                                                                                         
Out[98]: [[0, 1, 2, 3, 4, 5, 6, 7, 8]]

In [99]: list(chunker(range(9),1) )                                                                                                                                          
Out[99]: [[0], [1], [2], [3], [4], [5], [6], [7], [8]]

In [101]: %timeit list(chunker(range(101),2) )                                                                                                                               
11.3 µs ± 68.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

其他回答

使用小的函数和东西真的不吸引我;我更喜欢使用切片:

data = [...]
chunk_size = 10000 # or whatever
chunks = [data[i:i+chunk_size] for i in xrange(0,len(data),chunk_size)]
for chunk in chunks:
    ...

似乎没有一个漂亮的方法来做到这一点。下面是一个有很多方法的页面,包括:

def split_seq(seq, size):
    newseq = []
    splitsize = 1.0/size*len(seq)
    for i in range(size):
        newseq.append(seq[int(round(i*splitsize)):int(round((i+1)*splitsize))])
    return newseq

我从来不想填充我的块,所以这个要求是必要的。我发现在任何可迭代对象上工作的能力也是必需的。鉴于此,我决定扩展公认的答案,https://stackoverflow.com/a/434411/1074659。

如果由于需要比较和筛选填充值而不需要填充,则这种方法的性能会受到轻微的影响。然而,对于大块大小,这个实用程序是非常高性能的。

#!/usr/bin/env python3
from itertools import zip_longest


_UNDEFINED = object()


def chunker(iterable, chunksize, fillvalue=_UNDEFINED):
    """
    Collect data into chunks and optionally pad it.

    Performance worsens as `chunksize` approaches 1.

    Inspired by:
        https://docs.python.org/3/library/itertools.html#itertools-recipes

    """
    args = [iter(iterable)] * chunksize
    chunks = zip_longest(*args, fillvalue=fillvalue)
    yield from (
        filter(lambda val: val is not _UNDEFINED, chunk)
        if chunk[-1] is _UNDEFINED
        else chunk
        for chunk in chunks
    ) if fillvalue is _UNDEFINED else chunks

要避免所有到列表的转换,请导入itertools和:

>>> for k, g in itertools.groupby(xrange(35), lambda x: x/10):
...     list(g)

生产:

... 
0 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
1 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
2 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
3 [30, 31, 32, 33, 34]
>>> 

我检查了groupby,它不转换为列表或使用len,所以我(认为)这将延迟每个值的解析,直到它实际使用。不幸的是,没有一个现成的答案(在这个时候)似乎提供了这种变化。

显然,如果你需要依次处理每一项,在g上嵌套一个for循环:

for k,g in itertools.groupby(xrange(35), lambda x: x/10):
    for i in g:
       # do what you need to do with individual items
    # now do what you need to do with the whole group

我对此特别感兴趣的是需要消耗一个生成器,以批量提交最多1000个更改到gmail API:

    messages = a_generator_which_would_not_be_smart_as_a_list
    for idx, batch in groupby(messages, lambda x: x/1000):
        batch_request = BatchHttpRequest()
        for message in batch:
            batch_request.add(self.service.users().messages().modify(userId='me', id=message['id'], body=msg_labels))
        http = httplib2.Http()
        self.credentials.authorize(http)
        batch_request.execute(http=http)
def chunker(seq, size):
    return (seq[pos:pos + size] for pos in range(0, len(seq), size))

适用于任何序列:

text = "I am a very, very helpful text"

for group in chunker(text, 7):
   print(repr(group),)
# 'I am a ' 'very, v' 'ery hel' 'pful te' 'xt'

print('|'.join(chunker(text, 10)))
# I am a ver|y, very he|lpful text

animals = ['cat', 'dog', 'rabbit', 'duck', 'bird', 'cow', 'gnu', 'fish']

for group in chunker(animals, 3):
    print(group)
# ['cat', 'dog', 'rabbit']
# ['duck', 'bird', 'cow']
# ['gnu', 'fish']