我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
当前回答
派生自dict和并实现__getattr__和__setattr__。
或者你也可以用Bunch,非常相似。
我不认为这是可能的monkeypatch内置字典类。
其他回答
这是一个老问题,但我最近发现sklearn有一个可通过键访问的实现版本字典,即Bunch https://scikit-learn.org/stable/modules/generated/sklearn.utils.Bunch.html#sklearn.utils.Bunch
这是我对@derek73的回答。我用字典。__getitem__作为__getattr__,因此它仍然抛出KeyError,并且im重命名字典公共方法以“”前缀(“”包围导致特殊方法名称冲突,如__get__将被视为一个描述符方法)。无论如何,由于关键的dict基方法,您无法将键作为属性获得完全清晰的命名空间,因此解决方案并不完美,但您可以拥有键属性,如get, pop, items等。
class DotDictMeta(type):
def __new__(
cls,
name,
bases,
attrs,
rename_method=lambda n: f'__{n}__',
**custom_methods,
):
d = dict
attrs.update(
cls.get_hidden_or_renamed_methods(rename_method),
__getattr__=d.__getitem__,
__setattr__=d.__setitem__,
__delattr__=d.__delitem__,
**custom_methods,
)
return super().__new__(cls, name, bases, attrs)
def __init__(self, name, bases, attrs, **_):
super().__init__(name, bases, attrs)
@property
def attribute_error(self):
raise AttributeError
@classmethod
def get_hidden_or_renamed_methods(cls, rename_method=None):
public_methods = tuple(
i for i in dict.__dict__.items() if not i[0].startswith('__')
)
error = cls.attribute_error
hidden_methods = ((k, error) for k, v in public_methods)
yield from hidden_methods
if rename_method:
renamed_methods = ((rename_method(k), v) for k, v in public_methods)
yield from renamed_methods
class DotDict(dict, metaclass=DotDictMeta):
pass
你可以从DotDict命名空间中删除dict方法,并继续使用dict类方法,当你想操作其他dict实例并希望使用相同的方法而不需要额外检查它是否为DotDict时,它也很有用。
dct = dict(a=1)
dot_dct = DotDict(b=2)
foo = {c: i for i, c in enumerate('xyz')}
for d in (dct, dot_dct):
# you would have to use dct.update and dot_dct.__update methods
dict.update(d, foo)
assert dict.get(dot, 'foo', 0) is 0
此解决方案是对epool提供的解决方案的改进,以满足OP以一致的方式访问嵌套字典的需求。epool的解决方案不允许访问嵌套字典。
class YAMLobj(dict):
def __init__(self, args):
super(YAMLobj, self).__init__(args)
if isinstance(args, dict):
for k, v in args.iteritems():
if not isinstance(v, dict):
self[k] = v
else:
self.__setattr__(k, YAMLobj(v))
def __getattr__(self, attr):
return self.get(attr)
def __setattr__(self, key, value):
self.__setitem__(key, value)
def __setitem__(self, key, value):
super(YAMLobj, self).__setitem__(key, value)
self.__dict__.update({key: value})
def __delattr__(self, item):
self.__delitem__(item)
def __delitem__(self, key):
super(YAMLobj, self).__delitem__(key)
del self.__dict__[key]
使用这个类,现在可以执行如下操作:A.B.C.D.
@derek73的答案非常简洁,但它不能被pickle或(深度)复制,并且它在缺少键时返回None。下面的代码修复了这个问题。
编辑:我没有看到上面的答案解决了完全相同的问题(点赞)。我把答案留在这里供参考。
class dotdict(dict):
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def __getattr__(self, name):
try:
return self[name]
except KeyError:
raise AttributeError(name)
使用namedtuple允许点访问。
它就像一个轻量级对象,也具有元组的属性。
它允许定义属性并使用点操作符访问它们。
from collections import namedtuple
Data = namedtuple('Data', ['key1', 'key2'])
dataObj = Data(val1, key2=val2) # can instantiate using keyword arguments and positional arguments
使用点运算符访问
dataObj.key1 # Gives val1
datObj.key2 # Gives val2
使用元组索引进行访问
dataObj[0] # Gives val1
dataObj[1] # Gives val2
但记住这是一个元组;不是字典。因此下面的代码将给出错误
dataObj['key1'] # Gives TypeError: tuple indices must be integers or slices, not str
参考:namedtuple