df是一个pandas数据框架。 我想找到所有数字类型的列。 喜欢的东西:

isNumeric = is_numeric(df)

当前回答

请参阅以下代码:

if(dataset.select_dtypes(include=[np.number]).shape[1] > 0):
display(dataset.select_dtypes(include=[np.number]).describe())
if(dataset.select_dtypes(include=[np.object]).shape[1] > 0):
display(dataset.select_dtypes(include=[np.object]).describe())

通过这种方式,您可以检查值是数值,如float和int还是srting值。第二个if语句用于检查对象引用的字符串值。

其他回答

你可以使用没有文档的函数_get_numeric_data()只过滤数字列:

df._get_numeric_data()

例子:

In [32]: data
Out[32]:
   A  B
0  1  s
1  2  s
2  3  s
3  4  s

In [33]: data._get_numeric_data()
Out[33]:
   A
0  1
1  2
2  3
3  4

请注意,这是一个“私有方法”(即,一个实现细节),将来可能会更改或完全删除。请谨慎使用。

你可以使用DataFrame的select_dtypes方法。它包括include和exclude两个参数。所以isNumeric看起来是这样的:

numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']

newdf = df.select_dtypes(include=numerics)

请参阅以下代码:

if(dataset.select_dtypes(include=[np.number]).shape[1] > 0):
display(dataset.select_dtypes(include=[np.number]).describe())
if(dataset.select_dtypes(include=[np.object]).shape[1] > 0):
display(dataset.select_dtypes(include=[np.object]).describe())

通过这种方式,您可以检查值是数值,如float和int还是srting值。第二个if语句用于检查对象引用的字符串值。

很多贴出来的答案都是低效的。这些答案要么返回/选择原始数据帧的子集(不必要的副本),要么在describe()的情况下执行不必要的计算统计。

要获得数字列名,可以使用pd.api.types的条件列表推导式。is_numeric_dtype功能:

numeric_cols = [col for col in df if pd.api.types.is_numeric_dtype(df[col])]

我不确定这个函数是什么时候引入的。

简单的一行程序:

df.select_dtypes('number').columns