df是一个pandas数据框架。 我想找到所有数字类型的列。 喜欢的东西:

isNumeric = is_numeric(df)

当前回答

def is_type(df, baseType):
    import numpy as np
    import pandas as pd
    test = [issubclass(np.dtype(d).type, baseType) for d in df.dtypes]
    return pd.DataFrame(data = test, index = df.columns, columns = ["test"])
def is_float(df):
    import numpy as np
    return is_type(df, np.float)
def is_number(df):
    import numpy as np
    return is_type(df, np.number)
def is_integer(df):
    import numpy as np
    return is_type(df, np.integer)

其他回答

虽然这是一个古老的话题,

但我认为下面的公式比其他的都简单

df [df.describe () .columns]

由于函数describe()仅适用于数值列,因此输出的列将仅为数值列。

def is_type(df, baseType):
    import numpy as np
    import pandas as pd
    test = [issubclass(np.dtype(d).type, baseType) for d in df.dtypes]
    return pd.DataFrame(data = test, index = df.columns, columns = ["test"])
def is_float(df):
    import numpy as np
    return is_type(df, np.float)
def is_number(df):
    import numpy as np
    return is_type(df, np.number)
def is_integer(df):
    import numpy as np
    return is_type(df, np.integer)

简单的一行程序:

df.select_dtypes('number').columns

你可以使用没有文档的函数_get_numeric_data()只过滤数字列:

df._get_numeric_data()

例子:

In [32]: data
Out[32]:
   A  B
0  1  s
1  2  s
2  3  s
3  4  s

In [33]: data._get_numeric_data()
Out[33]:
   A
0  1
1  2
2  3
3  4

请注意,这是一个“私有方法”(即,一个实现细节),将来可能会更改或完全删除。请谨慎使用。

这是另一个简单的代码,用于在pandas数据帧中查找数字列,

numeric_clmns = df.dtypes[df.dtypes != "object"].index