有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。
当前回答
有一些恼人的边条件,即一个点恰好在两个相邻三角形的公共边上。这个点不可能在两个三角形中,也不可能不在两个三角形中。你需要一种任意但一致的方式来分配点。例如,画一条横线穿过这个点。如果这条直线与三角形的另一边在右侧相交,则该点被视为在三角形内。如果交点在左边,则该点在外面。
如果该点所在的直线是水平的,则使用above/below。
如果该点位于多个三角形的公共顶点上,则使用该点与中心点形成的角最小的三角形。
更有趣的是:三个点可以在一条直线上(零度),例如(0,0)-(0,10)-(0,5)。在三角剖分算法中,“耳朵”(0,10)必须被切掉,生成的“三角形”是直线的退化情况。
其他回答
下面是一个高效的Python实现:
def PointInsideTriangle2(pt,tri):
'''checks if point pt(2) is inside triangle tri(3x2). @Developer'''
a = 1/(-tri[1,1]*tri[2,0]+tri[0,1]*(-tri[1,0]+tri[2,0])+ \
tri[0,0]*(tri[1,1]-tri[2,1])+tri[1,0]*tri[2,1])
s = a*(tri[2,0]*tri[0,1]-tri[0,0]*tri[2,1]+(tri[2,1]-tri[0,1])*pt[0]+ \
(tri[0,0]-tri[2,0])*pt[1])
if s<0: return False
else: t = a*(tri[0,0]*tri[1,1]-tri[1,0]*tri[0,1]+(tri[0,1]-tri[1,1])*pt[0]+ \
(tri[1,0]-tri[0,0])*pt[1])
return ((t>0) and (1-s-t>0))
和一个示例输出:
有一些恼人的边条件,即一个点恰好在两个相邻三角形的公共边上。这个点不可能在两个三角形中,也不可能不在两个三角形中。你需要一种任意但一致的方式来分配点。例如,画一条横线穿过这个点。如果这条直线与三角形的另一边在右侧相交,则该点被视为在三角形内。如果交点在左边,则该点在外面。
如果该点所在的直线是水平的,则使用above/below。
如果该点位于多个三角形的公共顶点上,则使用该点与中心点形成的角最小的三角形。
更有趣的是:三个点可以在一条直线上(零度),例如(0,0)-(0,10)-(0,5)。在三角剖分算法中,“耳朵”(0,10)必须被切掉,生成的“三角形”是直线的退化情况。
bool point2Dtriangle(double e,double f, double a,double b,double c, double g,double h,double i, double v, double w){
/* inputs: e=point.x, f=point.y
a=triangle.Ax, b=triangle.Bx, c=triangle.Cx
g=triangle.Ay, h=triangle.By, i=triangle.Cy */
v = 1 - (f * (b - c) + h * (c - e) + i * (e - b)) / (g * (b - c) + h * (c - a) + i * (a - b));
w = (f * (a - b) + g * (b - e) + h * (e - a)) / (g * (b - c) + h * (c - a) + i * (a - b));
if (*v > -0.0 && *v < 1.0000001 && *w > -0.0 && *w < *v) return true;//is inside
else return false;//is outside
return 0;
}
从质心转换而来的几乎完美的笛卡尔坐标 在*v (x)和*w (y)双精度内导出。 在每种情况下,两个导出双精度对象前面都应该有一个*字符,可能是*v和*w 代码也可以用于四边形的另一个三角形。 特此签名只写三角形abc从顺时针abcd的四边形。
A---B
|..\\.o|
|....\\.|
D---C
o点在ABC三角形内 对于带有第二个三角形的测试,将此函数称为CDA方向,*v=1-*v后的结果应正确;* w = 1 - * w;为了四合院
因为没有JS的答案, 顺时针和逆时针解决方案:
function triangleContains(ax, ay, bx, by, cx, cy, x, y) {
let det = (bx - ax) * (cy - ay) - (by - ay) * (cx - ax)
return det * ((bx - ax) * (y - ay) - (by - ay) * (x - ax)) >= 0 &&
det * ((cx - bx) * (y - by) - (cy - by) * (x - bx)) >= 0 &&
det * ((ax - cx) * (y - cy) - (ay - cy) * (x - cx)) >= 0
}
编辑:修正了两个拼写错误(关于符号和比较)。
https://jsfiddle.net/jniac/rctb3gfL/
function triangleContains(ax, ay, bx, by, cx, cy, x, y) { let det = (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) return det * ((bx - ax) * (y - ay) - (by - ay) * (x - ax)) > 0 && det * ((cx - bx) * (y - by) - (cy - by) * (x - bx)) > 0 && det * ((ax - cx) * (y - cy) - (ay - cy) * (x - cx)) > 0 } let width = 500, height = 500 // clockwise let triangle1 = { A : { x: 10, y: -10 }, C : { x: 20, y: 100 }, B : { x: -90, y: 10 }, color: '#f00', } // counter clockwise let triangle2 = { A : { x: 20, y: -60 }, B : { x: 90, y: 20 }, C : { x: 20, y: 60 }, color: '#00f', } let scale = 2 let mouse = { x: 0, y: 0 } // DRAW > let wrapper = document.querySelector('div.wrapper') wrapper.onmousemove = ({ layerX:x, layerY:y }) => { x -= width / 2 y -= height / 2 x /= scale y /= scale mouse.x = x mouse.y = y drawInteractive() } function drawArrow(ctx, A, B) { let v = normalize(sub(B, A), 3) let I = center(A, B) let p p = add(I, rotate(v, 90), v) ctx.moveTo(p.x, p.y) ctx.lineTo(I.x, I .y) p = add(I, rotate(v, -90), v) ctx.lineTo(p.x, p.y) } function drawTriangle(ctx, { A, B, C, color }) { ctx.beginPath() ctx.moveTo(A.x, A.y) ctx.lineTo(B.x, B.y) ctx.lineTo(C.x, C.y) ctx.closePath() ctx.fillStyle = color + '6' ctx.strokeStyle = color ctx.fill() drawArrow(ctx, A, B) drawArrow(ctx, B, C) drawArrow(ctx, C, A) ctx.stroke() } function contains({ A, B, C }, P) { return triangleContains(A.x, A.y, B.x, B.y, C.x, C.y, P.x, P.y) } function resetCanvas(canvas) { canvas.width = width canvas.height = height let ctx = canvas.getContext('2d') ctx.resetTransform() ctx.clearRect(0, 0, width, height) ctx.setTransform(scale, 0, 0, scale, width/2, height/2) } function drawDots() { let canvas = document.querySelector('canvas#dots') let ctx = canvas.getContext('2d') resetCanvas(canvas) let count = 1000 for (let i = 0; i < count; i++) { let x = width * (Math.random() - .5) let y = width * (Math.random() - .5) ctx.beginPath() ctx.ellipse(x, y, 1, 1, 0, 0, 2 * Math.PI) if (contains(triangle1, { x, y })) { ctx.fillStyle = '#f00' } else if (contains(triangle2, { x, y })) { ctx.fillStyle = '#00f' } else { ctx.fillStyle = '#0003' } ctx.fill() } } function drawInteractive() { let canvas = document.querySelector('canvas#interactive') let ctx = canvas.getContext('2d') resetCanvas(canvas) ctx.beginPath() ctx.moveTo(0, -height/2) ctx.lineTo(0, height/2) ctx.moveTo(-width/2, 0) ctx.lineTo(width/2, 0) ctx.strokeStyle = '#0003' ctx.stroke() drawTriangle(ctx, triangle1) drawTriangle(ctx, triangle2) ctx.beginPath() ctx.ellipse(mouse.x, mouse.y, 4, 4, 0, 0, 2 * Math.PI) if (contains(triangle1, mouse)) { ctx.fillStyle = triangle1.color + 'a' ctx.fill() } else if (contains(triangle2, mouse)) { ctx.fillStyle = triangle2.color + 'a' ctx.fill() } else { ctx.strokeStyle = 'black' ctx.stroke() } } drawDots() drawInteractive() // trigo function add(...points) { let x = 0, y = 0 for (let point of points) { x += point.x y += point.y } return { x, y } } function center(...points) { let x = 0, y = 0 for (let point of points) { x += point.x y += point.y } x /= points.length y /= points.length return { x, y } } function sub(A, B) { let x = A.x - B.x let y = A.y - B.y return { x, y } } function normalize({ x, y }, length = 10) { let r = length / Math.sqrt(x * x + y * y) x *= r y *= r return { x, y } } function rotate({ x, y }, angle = 90) { let length = Math.sqrt(x * x + y * y) angle *= Math.PI / 180 angle += Math.atan2(y, x) x = length * Math.cos(angle) y = length * Math.sin(angle) return { x, y } } * { margin: 0; } html { font-family: monospace; } body { padding: 32px; } span.red { color: #f00; } span.blue { color: #00f; } canvas { position: absolute; border: solid 1px #ddd; } <p><span class="red">red triangle</span> is clockwise</p> <p><span class="blue">blue triangle</span> is couter clockwise</p> <br> <div class="wrapper"> <canvas id="dots"></canvas> <canvas id="interactive"></canvas> </div>
我在这里使用与上面描述的相同的方法:如果一个点分别位于AB, BC, CA的“同”边,则它在ABC内。
我只是想用一些简单的向量数学来解释安德里亚斯给出的重心坐标解,它会更容易理解。
区域A定义为s * v02 + t * v01给出的任意向量,条件s >= 0, t >= 0。如果三角形v0 v1 v2内的任意一点,它一定在区域A内。
如果进一步限制s, t属于[0,1]。得到包含s * v02 + t * v01的所有向量的区域B,条件s, t属于[0,1]。值得注意的是,区域B的下部是三角形v0, v1, v2的镜像。问题来了,我们是否可以给定一定的s和t条件,来进一步排除区域B的低部分。
假设我们给出一个值s, t在[0,1]内变化。在下图中,点p位于v1v2的边缘。s * v02 + t * v01的所有向量沿着虚线通过简单向量和得到。在v1v2和虚线交点p处,我们有:
(1-S)|V0v2|/ |v0v2|= tp|v0v1|/ |v0v1|
得到1 - s = tp,然后1 = s + tp。如果任意t > tp,即1 < s + t where在双虚线上,则该向量在三角形外,任意t <= tp,即1 >= s + t where在单虚线上,则该向量在三角形内。
如果我们给出[0,1]中的任意s,对应的t必须满足1 >= s + t,对于三角形内的向量。
最后我们得到v = s * v02 +t * v01, v在三角形内,条件s, t, s+t属于[0,1]。然后翻译到点,我们有
P - p0 = s * (p1 - p0) + t * (p2 - p0), and s, t, s + t in [0,1]
和Andreas解方程组的解是一样的 P = p0 + s * (p1 - p0) + t * (p2 - p0),带s, t, s + t属于[0,1]。