有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。


当前回答

老实说,这就像Simon P Steven的回答一样简单,但是用这种方法,你无法控制你是否想要包含三角形边缘上的点。

我的方法有点不同,但非常基本。考虑下面的三角形;

为了在三角形中有这个点我们必须满足三个条件

ACE角(绿色)应小于ACB角(红色) ECB角(蓝色)应小于ACB角(红色) 当点E和点C的x和y值应用于|AB|直线方程时,点E和点C的符号应该相同。

在此方法中,您可以完全控制单独包含或排除边缘上的点。所以你可以检查一个点是否在三角形中,例如,只包括|AC|边。

所以我的JavaScript解决方案是这样的;

function isInTriangle(t,p){ function isInBorder(a,b,c,p){ var m = (a.y - b.y) / (a.x - b.x); // calculate the slope return Math.sign(p.y - m*p.x + m*a.x - a.y) === Math.sign(c.y - m*c.x + m*a.x - a.y); } function findAngle(a,b,c){ // calculate the C angle from 3 points. var ca = Math.hypot(c.x-a.x, c.y-a.y), // ca edge length cb = Math.hypot(c.x-b.x, c.y-b.y), // cb edge length ab = Math.hypot(a.x-b.x, a.y-b.y); // ab edge length return Math.acos((ca*ca + cb*cb - ab*ab) / (2*ca*cb)); // return the C angle } var pas = t.slice(1) .map(tp => findAngle(p,tp,t[0])), // find the angle between (p,t[0]) with (t[1],t[0]) & (t[2],t[0]) ta = findAngle(t[1],t[2],t[0]); return pas[0] < ta && pas[1] < ta && isInBorder(t[1],t[2],t[0],p); } var triangle = [{x:3, y:4},{x:10, y:8},{x:6, y:10}], point1 = {x:3, y:9}, point2 = {x:7, y:9}; console.log(isInTriangle(triangle,point1)); console.log(isInTriangle(triangle,point2));

其他回答

我在JavaScript中改编的高性能代码(文章如下):

function pointInTriangle (p, p0, p1, p2) {
  return (((p1.y - p0.y) * (p.x - p0.x) - (p1.x - p0.x) * (p.y - p0.y)) | ((p2.y - p1.y) * (p.x - p1.x) - (p2.x - p1.x) * (p.y - p1.y)) | ((p0.y - p2.y) * (p.x - p2.x) - (p0.x - p2.x) * (p.y - p2.y))) >= 0;
}

pointInTriangle(p, p0, p1, p2) -用于逆时针方向的三角形 pointInTriangle(p, p0, p1, p2) -用于顺时针三角形

在jsFiddle(包括性能测试)中,在一个单独的函数中也有缠绕检查。或按下面的“运行代码片段”

var ctx = $("canvas")[0].getContext("2d"); var W = 500; var H = 500; var point = { x: W / 2, y: H / 2 }; var triangle = randomTriangle(); $("canvas").click(function(evt) { point.x = evt.pageX - $(this).offset().left; point.y = evt.pageY - $(this).offset().top; test(); }); $("canvas").dblclick(function(evt) { triangle = randomTriangle(); test(); }); document.querySelector('#performance').addEventListener('click', _testPerformance); test(); function test() { var result = checkClockwise(triangle.a, triangle.b, triangle.c) ? pointInTriangle(point, triangle.a, triangle.c, triangle.b) : pointInTriangle(point, triangle.a, triangle.b, triangle.c); var info = "point = (" + point.x + "," + point.y + ")\n"; info += "triangle.a = (" + triangle.a.x + "," + triangle.a.y + ")\n"; info += "triangle.b = (" + triangle.b.x + "," + triangle.b.y + ")\n"; info += "triangle.c = (" + triangle.c.x + "," + triangle.c.y + ")\n"; info += "result = " + (result ? "true" : "false"); $("#result").text(info); render(); } function _testPerformance () { var px = [], py = [], p0x = [], p0y = [], p1x = [], p1y = [], p2x = [], p2y = [], p = [], p0 = [], p1 = [], p2 = []; for(var i = 0; i < 1000000; i++) { p[i] = {x: Math.random() * 100, y: Math.random() * 100}; p0[i] = {x: Math.random() * 100, y: Math.random() * 100}; p1[i] = {x: Math.random() * 100, y: Math.random() * 100}; p2[i] = {x: Math.random() * 100, y: Math.random() * 100}; } console.time('optimal: pointInTriangle'); for(var i = 0; i < 1000000; i++) { pointInTriangle(p[i], p0[i], p1[i], p2[i]); } console.timeEnd('optimal: pointInTriangle'); console.time('original: ptInTriangle'); for(var i = 0; i < 1000000; i++) { ptInTriangle(p[i], p0[i], p1[i], p2[i]); } console.timeEnd('original: ptInTriangle'); } function pointInTriangle (p, p0, p1, p2) { return (((p1.y - p0.y) * (p.x - p0.x) - (p1.x - p0.x) * (p.y - p0.y)) | ((p2.y - p1.y) * (p.x - p1.x) - (p2.x - p1.x) * (p.y - p1.y)) | ((p0.y - p2.y) * (p.x - p2.x) - (p0.x - p2.x) * (p.y - p2.y))) >= 0; } function ptInTriangle(p, p0, p1, p2) { var s = (p0.y * p2.x - p0.x * p2.y + (p2.y - p0.y) * p.x + (p0.x - p2.x) * p.y); var t = (p0.x * p1.y - p0.y * p1.x + (p0.y - p1.y) * p.x + (p1.x - p0.x) * p.y); if (s <= 0 || t <= 0) return false; var A = (-p1.y * p2.x + p0.y * (-p1.x + p2.x) + p0.x * (p1.y - p2.y) + p1.x * p2.y); return (s + t) < A; } function render() { ctx.fillStyle = "#CCC"; ctx.fillRect(0, 0, 500, 500); drawTriangle(triangle.a, triangle.b, triangle.c); drawPoint(point); } function checkClockwise(p0, p1, p2) { var A = (-p1.y * p2.x + p0.y * (-p1.x + p2.x) + p0.x * (p1.y - p2.y) + p1.x * p2.y); return A > 0; } function drawTriangle(p0, p1, p2) { ctx.fillStyle = "#999"; ctx.beginPath(); ctx.moveTo(p0.x, p0.y); ctx.lineTo(p1.x, p1.y); ctx.lineTo(p2.x, p2.y); ctx.closePath(); ctx.fill(); ctx.fillStyle = "#000"; ctx.font = "12px monospace"; ctx.fillText("1", p0.x, p0.y); ctx.fillText("2", p1.x, p1.y); ctx.fillText("3", p2.x, p2.y); } function drawPoint(p) { ctx.fillStyle = "#F00"; ctx.beginPath(); ctx.arc(p.x, p.y, 5, 0, 2 * Math.PI); ctx.fill(); } function rand(min, max) { return Math.floor(Math.random() * (max - min + 1)) + min; } function randomTriangle() { return { a: { x: rand(0, W), y: rand(0, H) }, b: { x: rand(0, W), y: rand(0, H) }, c: { x: rand(0, W), y: rand(0, H) } }; } <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script> <button id="performance">Run performance test (open console)</button> <pre>Click: place the point. Double click: random triangle.</pre> <pre id="result"></pre> <canvas width="500" height="500"></canvas>

受此启发: http://www.phatcode.net/articles.php?id=459

一个简单的方法是:

找出连接 分别指向三角形的三个点 顶点和夹角之和 这些向量。如果它们的和 角度是2*那么点是 在三角形里面。

两个解释替代方案的好网站是:

黑卒和沃尔夫勒姆

最简单的方法,适用于所有类型的三角形,就是确定P点A点B点C点的角。如果任何一个角大于180.0度,那么它在外面,如果是180.0度,那么它在圆周上,如果acos欺骗了你,小于180.0度,那么它在里面。看一看理解http://math-physics-psychology.blogspot.hu/2015/01/earlish-determination-that-point-is.html

bool isInside( float x, float y, float x1, float y1, float x2, float y2, float x3, float y3 ) {
  float l1 = (x-x1)*(y3-y1) - (x3-x1)*(y-y1), 
    l2 = (x-x2)*(y1-y2) - (x1-x2)*(y-y2), 
    l3 = (x-x3)*(y2-y3) - (x2-x3)*(y-y3);
  return (l1>0 && l2>0  && l3>0) || (l1<0 && l2<0 && l3<0);
}

没有比这更有效率的了!三角形的每边都可以有独立的位置和方向,因此需要进行l1、l2和l3三个计算,每个计算需要进行2次乘法。一旦l1, l2和l3是已知的,结果只是一些基本的比较和布尔运算。

bool point2Dtriangle(double e,double f, double a,double b,double c, double g,double h,double i, double v, double w){
    /* inputs: e=point.x, f=point.y
               a=triangle.Ax, b=triangle.Bx, c=triangle.Cx 
               g=triangle.Ay, h=triangle.By, i=triangle.Cy */
    v = 1 - (f * (b - c) + h * (c - e) + i * (e - b)) / (g * (b - c) + h * (c - a) + i * (a - b));
    w = (f * (a - b) + g * (b - e) + h * (e - a)) / (g * (b - c) + h * (c - a) + i * (a - b));
    if (*v > -0.0 && *v < 1.0000001 && *w > -0.0 && *w < *v) return true;//is inside
    else return false;//is outside
    return 0;
} 

从质心转换而来的几乎完美的笛卡尔坐标 在*v (x)和*w (y)双精度内导出。 在每种情况下,两个导出双精度对象前面都应该有一个*字符,可能是*v和*w 代码也可以用于四边形的另一个三角形。 特此签名只写三角形abc从顺时针abcd的四边形。

A---B
|..\\.o|  
|....\\.| 
D---C 

o点在ABC三角形内 对于带有第二个三角形的测试,将此函数称为CDA方向,*v=1-*v后的结果应正确;* w = 1 - * w;为了四合院