我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
我认为这是迄今为止所有答案中最简洁的一个。
例如,假设我们有一个多边形,它带有多边形凹,看起来像这样:
大多边形顶点的二维坐标为
[[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
方框顶点的坐标为
[[248, 518], [336, 510], [341, 614], [250, 620]]
空心三角形顶点的坐标为
[[416, 531], [505, 517], [495, 616]]
假设我们想要测试两个点[296,557]和[422,730],如果它们在红色区域内(不包括边缘)。如果我们定位这两个点,它将是这样的:
显然,[296,557]不在读取区域内,而[422,730]在。
我的解决方案是基于圈数算法。下面是我只使用numpy的4行python代码:
def detect(points, *polygons):
import numpy as np
endpoint1 = np.r_[tuple(np.roll(p, 1, 0) for p in polygons)][:, None] - points
endpoint2 = np.r_[polygons][:, None] - points
p1, p2 = np.cross(endpoint1, endpoint2), np.einsum('...i,...i', endpoint1, endpoint2)
return ~((p1.sum(0) < 0) ^ (abs(np.arctan2(p1, p2).sum(0)) > np.pi) | ((p1 == 0) & (p2 <= 0)).any(0))
要测试实现:
points = [[296, 557], [422, 730]]
polygon1 = [[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
polygon2 = [[248, 518], [336, 510], [341, 614], [250, 620]]
polygon3 = [[416, 531], [505, 517], [495, 616]]
print(detect(points, polygon1, polygon2, polygon3))
输出:
[False True]
其他回答
下面是nirg给出的答案的c#版本,它来自RPI教授。请注意,使用来自RPI源代码的代码需要归属。
在顶部添加了一个边界框复选。然而,正如James Brown所指出的,主代码几乎和边界框检查本身一样快,所以边界框检查实际上会减慢整体操作,因为您正在检查的大多数点都在边界框内。所以你可以让边界框签出,或者另一种选择是预先计算多边形的边界框,如果它们不经常改变形状的话。
public bool IsPointInPolygon( Point p, Point[] polygon )
{
double minX = polygon[ 0 ].X;
double maxX = polygon[ 0 ].X;
double minY = polygon[ 0 ].Y;
double maxY = polygon[ 0 ].Y;
for ( int i = 1 ; i < polygon.Length ; i++ )
{
Point q = polygon[ i ];
minX = Math.Min( q.X, minX );
maxX = Math.Max( q.X, maxX );
minY = Math.Min( q.Y, minY );
maxY = Math.Max( q.Y, maxY );
}
if ( p.X < minX || p.X > maxX || p.Y < minY || p.Y > maxY )
{
return false;
}
// https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html
bool inside = false;
for ( int i = 0, j = polygon.Length - 1 ; i < polygon.Length ; j = i++ )
{
if ( ( polygon[ i ].Y > p.Y ) != ( polygon[ j ].Y > p.Y ) &&
p.X < ( polygon[ j ].X - polygon[ i ].X ) * ( p.Y - polygon[ i ].Y ) / ( polygon[ j ].Y - polygon[ i ].Y ) + polygon[ i ].X )
{
inside = !inside;
}
}
return inside;
}
Scala版本的解决方案由nirg(假设边界矩形预检查是单独完成的):
def inside(p: Point, polygon: Array[Point], bounds: Bounds): Boolean = {
val length = polygon.length
@tailrec
def oddIntersections(i: Int, j: Int, tracker: Boolean): Boolean = {
if (i == length)
tracker
else {
val intersects = (polygon(i).y > p.y) != (polygon(j).y > p.y) && p.x < (polygon(j).x - polygon(i).x) * (p.y - polygon(i).y) / (polygon(j).y - polygon(i).y) + polygon(i).x
oddIntersections(i + 1, i, if (intersects) !tracker else tracker)
}
}
oddIntersections(0, length - 1, tracker = false)
}
这个问题很有趣。我有另一个可行的想法,不同于这篇文章的其他答案。其原理是利用角度之和来判断目标是在内部还是外部。也就是圈数。
设x为目标点。让数组[0,1,....N]是该区域的所有点。用一条线将目标点与每一个边界点连接起来。如果目标点在这个区域内。所有角的和是360度。如果不是,角度将小于360度。
参考这张图来对这个概念有一个基本的了解:
我的算法假设顺时针是正方向。这是一个潜在的输入:
[[-122.402015, 48.225216], [-117.032049, 48.999931], [-116.919132, 45.995175], [-124.079107, 46.267259], [-124.717175, 48.377557], [-122.92315, 47.047963], [-122.402015, 48.225216]]
下面是实现这个想法的python代码:
def isInside(self, border, target):
degree = 0
for i in range(len(border) - 1):
a = border[i]
b = border[i + 1]
# calculate distance of vector
A = getDistance(a[0], a[1], b[0], b[1]);
B = getDistance(target[0], target[1], a[0], a[1])
C = getDistance(target[0], target[1], b[0], b[1])
# calculate direction of vector
ta_x = a[0] - target[0]
ta_y = a[1] - target[1]
tb_x = b[0] - target[0]
tb_y = b[1] - target[1]
cross = tb_y * ta_x - tb_x * ta_y
clockwise = cross < 0
# calculate sum of angles
if(clockwise):
degree = degree + math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))
else:
degree = degree - math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))
if(abs(round(degree) - 360) <= 3):
return True
return False
以下是M. Katz基于Nirg方法的答案的JavaScript变体:
function pointIsInPoly(p, polygon) {
var isInside = false;
var minX = polygon[0].x, maxX = polygon[0].x;
var minY = polygon[0].y, maxY = polygon[0].y;
for (var n = 1; n < polygon.length; n++) {
var q = polygon[n];
minX = Math.min(q.x, minX);
maxX = Math.max(q.x, maxX);
minY = Math.min(q.y, minY);
maxY = Math.max(q.y, maxY);
}
if (p.x < minX || p.x > maxX || p.y < minY || p.y > maxY) {
return false;
}
var i = 0, j = polygon.length - 1;
for (i, j; i < polygon.length; j = i++) {
if ( (polygon[i].y > p.y) != (polygon[j].y > p.y) &&
p.x < (polygon[j].x - polygon[i].x) * (p.y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x ) {
isInside = !isInside;
}
}
return isInside;
}
这只适用于凸形状,但是Minkowski Portal Refinement和GJK也是测试一个点是否在多边形中的很好的选择。您使用闵可夫斯基减法从多边形中减去点,然后运行这些算法来查看多边形是否包含原点。
另外,有趣的是,你可以用支持函数更隐式地描述你的形状,它以一个方向向量作为输入,并输出沿该向量的最远点。这可以让你描述任何凸形状..弯曲的,由多边形制成的,或混合的您还可以执行一些操作,将简单支持函数的结果组合起来,以生成更复杂的形状。
更多信息: http://xenocollide.snethen.com/mpr2d.html
此外,game programming gems 7讨论了如何在3d中做到这一点(:
推荐文章
- 确定记录是否存在的最快方法
- 阅读GHC核心
- Python: List vs Dict用于查找表
- 为什么MATLAB的矩阵乘法运算这么快?
- for循环和for-each循环在性能上有区别吗?
- 就性能而言,使用std::memcpy()还是std::copy()更好?
- 什么时候我应该(不)想要在我的代码中使用熊猫apply() ?
- 如何加速gwt编译器?
- MySQL OR与IN性能
- 应该……接住环内还是环外?
- 哪个更快/最好?SELECT *或SELECT columnn1, colum2, column3等
- 加快R中的循环操作
- INT和VARCHAR主键之间有真正的性能差异吗?
- c++标准是否要求iostreams的性能很差,或者我只是在处理一个糟糕的实现?
- 大概的成本访问各种缓存和主存储器?