我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。


当前回答

这只适用于凸形状,但是Minkowski Portal Refinement和GJK也是测试一个点是否在多边形中的很好的选择。您使用闵可夫斯基减法从多边形中减去点,然后运行这些算法来查看多边形是否包含原点。

另外,有趣的是,你可以用支持函数更隐式地描述你的形状,它以一个方向向量作为输入,并输出沿该向量的最远点。这可以让你描述任何凸形状..弯曲的,由多边形制成的,或混合的您还可以执行一些操作,将简单支持函数的结果组合起来,以生成更复杂的形状。

更多信息: http://xenocollide.snethen.com/mpr2d.html

此外,game programming gems 7讨论了如何在3d中做到这一点(:

其他回答

这个问题的大多数答案并没有很好地处理所有的极端情况。以下是一些微妙的极端情况: 这是一个javascript版本,所有角落的情况都得到了很好的处理。

/** Get relationship between a point and a polygon using ray-casting algorithm
 * @param {{x:number, y:number}} P: point to check
 * @param {{x:number, y:number}[]} polygon: the polygon
 * @returns -1: outside, 0: on edge, 1: inside
 */
function relationPP(P, polygon) {
    const between = (p, a, b) => p >= a && p <= b || p <= a && p >= b
    let inside = false
    for (let i = polygon.length-1, j = 0; j < polygon.length; i = j, j++) {
        const A = polygon[i]
        const B = polygon[j]
        // corner cases
        if (P.x == A.x && P.y == A.y || P.x == B.x && P.y == B.y) return 0
        if (A.y == B.y && P.y == A.y && between(P.x, A.x, B.x)) return 0

        if (between(P.y, A.y, B.y)) { // if P inside the vertical range
            // filter out "ray pass vertex" problem by treating the line a little lower
            if (P.y == A.y && B.y >= A.y || P.y == B.y && A.y >= B.y) continue
            // calc cross product `PA X PB`, P lays on left side of AB if c > 0 
            const c = (A.x - P.x) * (B.y - P.y) - (B.x - P.x) * (A.y - P.y)
            if (c == 0) return 0
            if ((A.y < B.y) == (c > 0)) inside = !inside
        }
    }

    return inside? 1 : -1
}

如果你正在寻找一个java脚本库,有一个javascript谷歌maps v3扩展的Polygon类,以检测是否有一个点驻留在它里面。

var polygon = new google.maps.Polygon([], "#000000", 1, 1, "#336699", 0.3);
var isWithinPolygon = polygon.containsLatLng(40, -90);

谷歌扩展Github

为了完整性,这里是nirg提供的算法的lua实现,由Mecki讨论:

function pnpoly(area, test)
    local inside = false
    local tx, ty = table.unpack(test)
    local j = #area
    for i=1, #area do
        local vxi, vyi = table.unpack(area[i])
        local vxj, vyj = table.unpack(area[j])
        if (vyi > ty) ~= (vyj > ty)
        and tx < (vxj - vxi)*(ty - vyi)/(vyj - vyi) + vxi
        then
            inside = not inside
        end
        j = i
    end
    return inside
end

变量区域是一个点的表,这些点依次存储为2D表。例子:

> A = {{2, 1}, {1, 2}, {15, 3}, {3, 4}, {5, 3}, {4, 1.5}}
> T = {2, 1.1}
> pnpoly(A, T)
true

GitHub Gist的链接。

您可以通过检查将所需点连接到多边形顶点所形成的面积是否与多边形本身的面积相匹配来实现这一点。

或者你可以检查从你的点到每一对连续的多边形顶点到你的检查点的内角之和是否为360,但我有一种感觉,第一种选择更快,因为它不涉及除法,也不计算三角函数的反函数。

我不知道如果你的多边形内部有一个洞会发生什么,但在我看来,主要思想可以适应这种情况

你也可以把问题贴在数学社区里。我打赌他们有一百万种方法

真的很喜欢Nirg发布的解决方案,由bobobobo编辑。我只是让它javascript友好,更容易读懂我的使用:

function insidePoly(poly, pointx, pointy) {
    var i, j;
    var inside = false;
    for (i = 0, j = poly.length - 1; i < poly.length; j = i++) {
        if(((poly[i].y > pointy) != (poly[j].y > pointy)) && (pointx < (poly[j].x-poly[i].x) * (pointy-poly[i].y) / (poly[j].y-poly[i].y) + poly[i].x) ) inside = !inside;
    }
    return inside;
}