我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
from typing import Iterable
def pnpoly(verts, x, y):
#check if x and/or y is iterable
xit, yit = isinstance(x, Iterable), isinstance(y, Iterable)
#if not iterable, make an iterable of length 1
X = x if xit else (x, )
Y = y if yit else (y, )
#store verts length as a range to juggle j
r = range(len(verts))
#final results if x or y is iterable
results = []
#traverse x and y coordinates
for xp in X:
for yp in Y:
c = 0 #reset c at every new position
for i in r:
j = r[i-1] #set j to position before i
#store a few arguments to shorten the if statement
yneq = (verts[i][1] > yp) != (verts[j][1] > yp)
xofs, yofs = (verts[j][0] - verts[i][0]), (verts[j][1] - verts[i][1])
#if we have crossed a line, increment c
if (yneq and (xp < xofs * (yp - verts[i][1]) / yofs + verts[i][0])):
c += 1
#if c is odd store the coordinates
if c%2:
results.append((xp, yp))
#return either coordinates or a bool, depending if x or y was an iterable
return results if (xit or yit) else bool(c%2)
这个python版本是通用的。您可以为True/False结果输入单个x和单个y值,也可以使用x和y的范围来遍历整个点网格。如果使用范围,则返回所有True点的x/y对列表。vertices参数需要一个由x/y对组成的二维Iterable,例如:[(x1,y1), (x2,y2),…]
使用示例:
vertices = [(25,25), (75,25), (75,75), (25,75)]
pnpoly(vertices, 50, 50) #True
pnpoly(vertices, range(100), range(100)) #[(25,25), (25,26), (25,27), ...]
实际上,这些都可以。
pnpoly(vertices, 50, range(100)) #check 0 to 99 y at x of 50
pnpoly(vertices, range(100), 50) #check 0 to 99 x at y of 50
其他回答
简单的解决方案是将多边形划分为三角形,并按这里解释的那样对三角形进行测试
如果你的多边形是凸多边形,可能有更好的方法。把这个多边形看作是无限条线的集合。每一行将空间一分为二。对于每一个点,很容易判断它是在直线的一边还是另一边。如果一个点在所有直线的同一侧,那么它在多边形内。
您可以通过检查将所需点连接到多边形顶点所形成的面积是否与多边形本身的面积相匹配来实现这一点。
或者你可以检查从你的点到每一对连续的多边形顶点到你的检查点的内角之和是否为360,但我有一种感觉,第一种选择更快,因为它不涉及除法,也不计算三角函数的反函数。
我不知道如果你的多边形内部有一个洞会发生什么,但在我看来,主要思想可以适应这种情况
你也可以把问题贴在数学社区里。我打赌他们有一百万种方法
如果你正在使用谷歌Map SDK,想要检查一个点是否在一个多边形内,你可以尝试使用GMSGeometryContainsLocation。效果很好!!它是这样运作的,
if GMSGeometryContainsLocation(point, polygon, true) {
print("Inside this polygon.")
} else {
print("outside this polygon")
}
这里是参考资料:https://developers.google.com/maps/documentation/ios-sdk/reference/group___geometry_utils#gaba958d3776d49213404af249419d0ffd
当我还是Michael Stonebraker手下的一名研究员时,我做了一些关于这方面的工作——你知道,就是那位提出了Ingres、PostgreSQL等的教授。
我们意识到最快的方法是首先做一个边界框,因为它非常快。如果它在边界框之外,它就在外面。否则,你就得做更辛苦的工作……
如果你想要一个伟大的算法,看看开源项目PostgreSQL的源代码的地理工作…
我想指出的是,我们从来没有深入了解过左撇子和右撇子(也可以表达为“内”和“外”的问题……
更新
BKB's link provided a good number of reasonable algorithms. I was working on Earth Science problems and therefore needed a solution that works in latitude/longitude, and it has the peculiar problem of handedness - is the area inside the smaller area or the bigger area? The answer is that the "direction" of the verticies matters - it's either left-handed or right handed and in this way you can indicate either area as "inside" any given polygon. As such, my work used solution three enumerated on that page.
此外,我的工作使用单独的函数进行“在线”测试。
...因为有人问:我们发现当垂直的数量超过某个数字时,边界盒测试是最好的——如果有必要,在做更长的测试之前做一个非常快速的测试……边界框是通过简单地将最大的x,最小的x,最大的y和最小的y放在一起,组成一个框的四个点来创建的……
另一个提示是:我们在网格空间中进行了所有更复杂的“调光”计算,都是在平面上的正点上进行的,然后重新投影到“真实”的经度/纬度上,从而避免了在经度180线交叉时和处理极地时可能出现的环绕错误。工作好了!
我认为这是迄今为止所有答案中最简洁的一个。
例如,假设我们有一个多边形,它带有多边形凹,看起来像这样:
大多边形顶点的二维坐标为
[[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
方框顶点的坐标为
[[248, 518], [336, 510], [341, 614], [250, 620]]
空心三角形顶点的坐标为
[[416, 531], [505, 517], [495, 616]]
假设我们想要测试两个点[296,557]和[422,730],如果它们在红色区域内(不包括边缘)。如果我们定位这两个点,它将是这样的:
显然,[296,557]不在读取区域内,而[422,730]在。
我的解决方案是基于圈数算法。下面是我只使用numpy的4行python代码:
def detect(points, *polygons):
import numpy as np
endpoint1 = np.r_[tuple(np.roll(p, 1, 0) for p in polygons)][:, None] - points
endpoint2 = np.r_[polygons][:, None] - points
p1, p2 = np.cross(endpoint1, endpoint2), np.einsum('...i,...i', endpoint1, endpoint2)
return ~((p1.sum(0) < 0) ^ (abs(np.arctan2(p1, p2).sum(0)) > np.pi) | ((p1 == 0) & (p2 <= 0)).any(0))
要测试实现:
points = [[296, 557], [422, 730]]
polygon1 = [[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
polygon2 = [[248, 518], [336, 510], [341, 614], [250, 620]]
polygon3 = [[416, 531], [505, 517], [495, 616]]
print(detect(points, polygon1, polygon2, polygon3))
输出:
[False True]
推荐文章
- 确定记录是否存在的最快方法
- 阅读GHC核心
- Python: List vs Dict用于查找表
- 为什么MATLAB的矩阵乘法运算这么快?
- for循环和for-each循环在性能上有区别吗?
- 就性能而言,使用std::memcpy()还是std::copy()更好?
- 什么时候我应该(不)想要在我的代码中使用熊猫apply() ?
- 如何加速gwt编译器?
- MySQL OR与IN性能
- 应该……接住环内还是环外?
- 哪个更快/最好?SELECT *或SELECT columnn1, colum2, column3等
- 加快R中的循环操作
- INT和VARCHAR主键之间有真正的性能差异吗?
- c++标准是否要求iostreams的性能很差,或者我只是在处理一个糟糕的实现?
- 大概的成本访问各种缓存和主存储器?