我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?

比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?


当前回答

我喜欢don neufeld的答案,但我想我可以加上O(nlog n)

使用简单分治策略的算法可能是O(log n)最简单的例子是在排序列表中查找某个东西。你不需要从头开始扫描。你走到中间,你决定是向后走还是向前走,跳到中途,直到你找到你要找的东西。

如果您查看快速排序或归并排序算法,您将看到它们都采用将列表分成两半,对每一半排序(使用相同的算法,递归地),然后重新组合两半的方法。这种递归分治策略是O(nlog n)

If you think about it carefully, you'll see that quicksort does an O(n) partitioning algorithm on the whole n items, then an O(n) partitioning twice on n/2 items, then 4 times on n/4 items, etc... until you get to an n partitions on 1 item (which is degenerate). The number of times you divide n in half to get to 1 is approximately log n, and each step is O(n), so recursive divide and conquer is O(n log n). Mergesort builds the other way, starting with n recombinations of 1 item, and finishing with 1 recombination of n items, where the recombination of two sorted lists is O(n).

至于抽大麻写一个O(n!)算法,除非你别无选择。上面提到的旅行推销员问题被认为是这样一个问题。

其他回答

把它想象成垂直堆叠乐高积木(n),然后跳过它们。

O(1)表示在每一步,你什么都不做。高度保持不变。

O(n)表示在每一步,你堆叠c块,其中c1是常数。

O(n²)表示在每一步,你堆叠c2 x n个块,其中c2是一个常数,n是堆叠块的数量。

O(nlogn)表示在每一步,你堆叠c3 x n x logn个块,其中c3是一个常数,n是堆叠块的数量。

大多数Jon Bentley的书(例如Programming Pearls)都以一种非常实用的方式涵盖了这些内容。他的这次演讲中就包括了一个这样的快排分析。

虽然与这个问题并不完全相关,但Knuth提出了一个有趣的想法:在高中微积分课上教授Big-O符号,尽管我觉得这个想法相当古怪。

只是为了回应我上面帖子的一些评论:

Domenic - I'm on this site, and I care. Not for pedantry's sake, but because we - as programmers - typically care about precision. Using O( ) notation incorrectly in the style that some have done here renders it kind of meaningless; we may just as well say something takes n^2 units of time as O( n^2 ) under the conventions used here. Using the O( ) adds nothing. It's not just a small discrepancy between common usage and mathematical precision that I'm talking about, it's the difference between it being meaningful and it not.

我知道很多很多优秀的程序员都准确地使用这些术语。说“哦,我们是程序员,所以我们不在乎”会降低整个企业的成本。

一个接一个-嗯,不完全是,尽管我同意你的观点。对于任意大的n,它不是O(1)这是O()的定义。它只是表明O()对于有界n的适用性有限,在这里我们更愿意讨论所走的步数,而不是这个数字的界限。

big - o符号对代码的重要意义在于,当它所操作的“事物”数量增加一倍时,它将如何扩展。这里有一个具体的例子:

Big-O       |  computations for 10 things |  computations for 100 things
----------------------------------------------------------------------
O(1)        |   1                         |     1
O(log(n))   |   3                         |     7
O(n)        |  10                         |   100
O(n log(n)) |  30                         |   700
O(n^2)      | 100                         | 10000

快速排序是O(nlog (n))而冒泡排序是O(n²)当排序10个东西时,快速排序比冒泡排序快3倍。但当对100个东西进行排序时,速度要快14倍!显然,选择最快的算法很重要。当您访问具有数百万行的数据库时,这可能意味着您的查询在0.2秒内执行,而不是花费数小时。

另一件需要考虑的事情是,糟糕的算法是摩尔定律无法帮助的事情。例如,如果你有一个O(n^3)的科学计算,它一天可以计算100个东西,处理器速度翻倍一天只能计算125个东西。然而,计算到O(n²),你每天要做1000件事情。

澄清: 实际上,Big-O并没有说不同算法在同一特定大小点上的性能比较,而是说同一算法在不同大小点上的性能比较:

                 computations     computations       computations
Big-O       |   for 10 things |  for 100 things |  for 1000 things
----------------------------------------------------------------------
O(1)        |        1        |        1        |         1
O(log(n))   |        1        |        3        |         7
O(n)        |        1        |       10        |       100
O(n log(n)) |        1        |       33        |       664
O(n^2)      |        1        |      100        |     10000

一种思考的方式是:

O(N²)意味着对于每个元素,你都要对其他元素做一些事情,比如比较它们。冒泡排序就是一个例子。

O(N log N)意味着对于每个元素,你只需要看log N个元素。这通常是因为你知道一些元素,可以让你做出有效的选择。最有效的排序就是一个例子,比如归并排序。

O(N!)表示对N个元素的所有可能排列进行处理。旅行推销员就是一个例子,那里有N!访问节点的方法,暴力解决方案是查看每一种可能的排列的总代价,以找到最优的一个。