我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?
比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?
我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?
比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?
当前回答
有一件事由于某种原因还没有被提及:
当你看到像O(2^n)或O(n^3)这样的算法时,这通常意味着你将不得不接受一个不完美的问题答案,以获得可接受的性能。
在处理优化问题时,像这样的正确解决方案很常见。在合理的时间内给出一个近乎正确的答案,总比在机器腐烂成灰尘很久之后才给出一个正确答案要好。
以国际象棋为例:我不知道正确的解决方案是什么,但它可能是O(n^50)或更糟。从理论上讲,任何计算机都不可能真正计算出正确答案——即使你用宇宙中的每个粒子作为计算元素,在宇宙生命周期内尽可能短的时间内执行一项操作,你仍然会剩下很多零。(量子计算机能否解决这个问题是另一回事。)
其他回答
假设你有一台可以解决一定规模问题的计算机。现在想象一下,我们可以将性能提高几倍。每加倍一次,我们能解决多大的问题?
如果我们能解决一个两倍大的问题,那就是O(n)
如果我们有一个非1的乘数,那就是某种多项式复杂度。例如,如果每加倍一次,问题的规模就会增加约40%,即O(n²),而约30%则是O(n³)。
如果我们只是增加问题的规模,它是指数级的,甚至更糟。例如,如果每翻一倍意味着我们可以解决一个大1的问题,它就是O(2^n)。(这就是为什么使用合理大小的密钥实际上不可能强制使用密码密钥:128位密钥需要的处理量大约是64位密钥的16万亿倍。)
我是这样向我那些不懂技术的朋友描述的:
考虑多位数加法。很好的老式铅笔和纸的补充。就是你7-8岁时学的那种。给定两个三位数或四位数,你很容易就能求出它们加起来是多少。
如果我给你两个100位的数字,然后问你它们加起来是多少,即使你必须使用铅笔和纸,计算出来也会非常简单。一个聪明的孩子可以在几分钟内做这样的加法。这只需要大约100次操作。
现在,考虑多位数乘法。你可能在八九岁的时候就学会了。你(希望)做了很多重复的练习来学习它背后的机制。
Now, imagine I gave you those same two 100-digit numbers and told you to multiply them together. This would be a much, much harder task, something that would take you hours to do - and that you'd be unlikely to do without mistakes. The reason for this is that (this version of) multiplication is O(n^2); each digit in the bottom number has to be multiplied by each digit in the top number, leaving a total of about n^2 operations. In the case of the 100-digit numbers, that's 10,000 multiplications.
log(n) means logarithmic growth. An example would be divide and conquer algorithms. If you have 1000 sorted numbers in an array ( ex. 3, 10, 34, 244, 1203 ... ) and want to search for a number in the list (find its position), you could start with checking the value of the number at index 500. If it is lower than what you seek, jump to 750. If it is higher than what you seek, jump to 250. Then you repeat the process until you find your value (and key). Every time we jump half the search space, we can cull away testing many other values since we know the number 3004 can't be above number 5000 (remember, it is a sorted list).
N log(N)表示N * log(N)
把它想象成垂直堆叠乐高积木(n),然后跳过它们。
O(1)表示在每一步,你什么都不做。高度保持不变。
O(n)表示在每一步,你堆叠c块,其中c1是常数。
O(n²)表示在每一步,你堆叠c2 x n个块,其中c2是一个常数,n是堆叠块的数量。
O(nlogn)表示在每一步,你堆叠c3 x n x logn个块,其中c3是一个常数,n是堆叠块的数量。
big - o符号对代码的重要意义在于,当它所操作的“事物”数量增加一倍时,它将如何扩展。这里有一个具体的例子:
Big-O | computations for 10 things | computations for 100 things ---------------------------------------------------------------------- O(1) | 1 | 1 O(log(n)) | 3 | 7 O(n) | 10 | 100 O(n log(n)) | 30 | 700 O(n^2) | 100 | 10000
快速排序是O(nlog (n))而冒泡排序是O(n²)当排序10个东西时,快速排序比冒泡排序快3倍。但当对100个东西进行排序时,速度要快14倍!显然,选择最快的算法很重要。当您访问具有数百万行的数据库时,这可能意味着您的查询在0.2秒内执行,而不是花费数小时。
另一件需要考虑的事情是,糟糕的算法是摩尔定律无法帮助的事情。例如,如果你有一个O(n^3)的科学计算,它一天可以计算100个东西,处理器速度翻倍一天只能计算125个东西。然而,计算到O(n²),你每天要做1000件事情。
澄清: 实际上,Big-O并没有说不同算法在同一特定大小点上的性能比较,而是说同一算法在不同大小点上的性能比较:
computations computations computations Big-O | for 10 things | for 100 things | for 1000 things ---------------------------------------------------------------------- O(1) | 1 | 1 | 1 O(log(n)) | 1 | 3 | 7 O(n) | 1 | 10 | 100 O(n log(n)) | 1 | 33 | 664 O(n^2) | 1 | 100 | 10000