我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?
比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?
我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?
比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?
当前回答
把它想象成垂直堆叠乐高积木(n),然后跳过它们。
O(1)表示在每一步,你什么都不做。高度保持不变。
O(n)表示在每一步,你堆叠c块,其中c1是常数。
O(n²)表示在每一步,你堆叠c2 x n个块,其中c2是一个常数,n是堆叠块的数量。
O(nlogn)表示在每一步,你堆叠c3 x n x logn个块,其中c3是一个常数,n是堆叠块的数量。
其他回答
还记得乌龟和兔子的寓言吗?
从长远来看,乌龟赢了,但从短期来看,兔子赢了。
这就像O(logN)(乌龟)vs O(N)(野兔)。
如果两种方法的大o值不同,那么它们中的一种会在N的水平上获胜,但大o值没有说明N的大小。
有一件事由于某种原因还没有被提及:
当你看到像O(2^n)或O(n^3)这样的算法时,这通常意味着你将不得不接受一个不完美的问题答案,以获得可接受的性能。
在处理优化问题时,像这样的正确解决方案很常见。在合理的时间内给出一个近乎正确的答案,总比在机器腐烂成灰尘很久之后才给出一个正确答案要好。
以国际象棋为例:我不知道正确的解决方案是什么,但它可能是O(n^50)或更糟。从理论上讲,任何计算机都不可能真正计算出正确答案——即使你用宇宙中的每个粒子作为计算元素,在宇宙生命周期内尽可能短的时间内执行一项操作,你仍然会剩下很多零。(量子计算机能否解决这个问题是另一回事。)
我试图用c#和JavaScript给出简单的代码示例来解释。
C#
For List<int> numbers = new List<int> {1,2,3,4,5,6,7,12,543,7};
O(1)看起来像
return numbers.First();
O(n)看起来像
int result = 0;
foreach (int num in numbers)
{
result += num;
}
return result;
O(nlog (n))是这样的
int result = 0;
foreach (int num in numbers)
{
int index = numbers.Count - 1;
while (index > 1)
{
// yeah, stupid, but couldn't come up with something more useful :-(
result += numbers[index];
index /= 2;
}
}
return result;
O(n2)是这样的
int result = 0;
foreach (int outerNum in numbers)
{
foreach (int innerNum in numbers)
{
result += outerNum * innerNum;
}
}
return result;
O(n!)看起来,嗯,太累了,想不出任何简单的东西。 但我希望你能明白大意?
JavaScript
对于const数= [1,2,3,4,5,6,7,12,543,7];
O(1)看起来像
numbers[0];
O(n)看起来像
let result = 0;
for (num of numbers){
result += num;
}
O(nlog (n))是这样的
let result = 0;
for (num of numbers){
let index = numbers.length - 1;
while (index > 1){
// yeah, stupid, but couldn't come up with something more useful :-(
result += numbers[index];
index = Math.floor(index/2)
}
}
O(n2)是这样的
let result = 0;
for (outerNum of numbers){
for (innerNum of numbers){
result += outerNum * innerNum;
}
}
我是这样想的,你有一个任务,要清理一个由坏人V引起的问题,他选择了N,你必须估计出当他增加N时,你需要多长时间来完成你的问题。
O(1) ->增加N并没有什么不同
O(log(N)) ->每次V翻倍N,你必须花费额外的时间T来完成任务。V又翻倍了N,你花了同样多的钱。
O(N) -> V N每翻一倍,花费的时间就翻一倍。
O(N²)- V N每翻一倍,花费的时间就增加4倍。(这不公平!!)
O(nlog (N)) -, V每翻一倍N,你就花两倍的时间,再多一点。
这些是算法的边界;计算机科学家想要描述大n值需要多长时间(当你分解密码学中使用的数字时,这很重要——如果计算机速度提高了10倍,你需要多使用多少位才能确保它们仍然需要100年而不是1年才能破解你的加密?)
有些界限可能有奇怪的表达式,如果它对涉及的人有影响的话。我在Knuth的《计算机编程艺术》中见过类似于O(nlog (N) log(log(N))的算法。(我一时想不起是哪一个了)
大多数Jon Bentley的书(例如Programming Pearls)都以一种非常实用的方式涵盖了这些内容。他的这次演讲中就包括了一个这样的快排分析。
虽然与这个问题并不完全相关,但Knuth提出了一个有趣的想法:在高中微积分课上教授Big-O符号,尽管我觉得这个想法相当古怪。