我无法理解这个,哪个更随机?

rand()

OR:

rand() * rand()

我发现这是一个真正的脑筋急转弯,你能帮我吗?


编辑:

直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。


当前回答

过度简化以说明一点。

假设随机函数只输出0或1。

random()是(0,1)之一,但random(()*random(是(0,0,0,1)之一

你可以清楚地看到,在第二种情况下,获得0的机会绝不等于获得1的机会。


当我第一次发布这个答案时,我希望尽可能简短,以便阅读它的人一眼就能理解random()和random(*random)之间的区别,但我无法阻止自己回答最初的广告垃圾问题:

哪个更随机?

如果random()、random(()*random()、random()+random(()、(random(+1)/2或任何其他不会导致固定结果的组合具有相同的熵源(或者在伪随机生成器的情况下具有相同的初始状态),那么答案将是它们具有相同的随机性(差异在于它们的分布)。我们可以看到的一个完美的例子是Craps游戏。你得到的数字将是随机的(1,6)+随机的(6,6),我们都知道得到7的几率最高,但这并不意味着掷两个骰子的结果比掷一个骰子的效果更随机。

其他回答

当你对随机数的组合会发生什么感到怀疑时,你可以利用你在统计理论中学到的经验。

在OP的情况下,他想知道X*X=X^2的结果是什么,其中X是沿统一[0,1]分布的随机变量。我们将使用CDF技术,因为它只是一对一映射。

由于X~Uniform[0,1],其cdf为:fX(X)=1我们需要转换Y<-X^2,因此Y=X^2求逆x(y):sqrt(y)=x,这给出了x作为y的函数。接下来,求导数dx/dy:d/dy(sqrt(y))=1/(2sqrt(y)

Y的分布如下:fY(Y)=fX(x(Y))|dx/dy |=1/(2 sqrt(Y)

我们还没有完成,我们必须得到Y的域,因为0<=x<1,0<=x^2<1因此Y在范围[0,1)内。如果你想检查Y的pdf是否真的是pdf,请在域中集成它:从0到1集成1/(2 sqrt(Y)),实际上,它会弹出为1。此外,请注意所述函数的形状看起来像belisarious发布的内容。

至于X1+X2+…+Xn,(其中Xi ~一致[0,1]),我们可以求助于中心极限定理,它适用于存在矩的任何分布。这就是Z检验存在的原因。

用于确定生成的pdf的其他技术包括雅可比变换(这是cdf技术的广义版本)和MGF技术。

编辑:作为澄清,请注意,我所说的是结果转换的分布,而不是其随机性。这实际上是一个单独的讨论。我实际上得到的是(rand())^2。对于rand()*rand((),它要复杂得多,无论如何,这不会导致任何类型的均匀分布。

没有比这更随机的了。它要么是随机的,要么不是随机的。随机意味着“难以预测”。这并不意味着不确定性。如果random()是随机的,那么random(()和random(*random)都是随机的。就随机性而言,分布是无关紧要的。如果出现不均匀分布,则意味着某些值比其他值更有可能;它们仍然是不可预测的。由于涉及伪随机性,所以这些数字非常具有确定性。然而,在概率模型和模拟中,伪随机性通常是足够的。众所周知,使伪随机数生成器复杂化只会使其难以分析。不太可能提高随机性;它经常导致它无法通过统计测试。随机数的期望财产很重要:重复性和再现性、统计随机性、(通常)均匀分布和大周期是少数几个。关于随机数上的变换:正如有人所说,两个或多个均匀分布的和产生正态分布。这是加法中心极限定理。无论源分布如何,只要所有分布都是独立和相同的,它都适用。乘性中心极限定理表示两个或多个独立且一致分布的随机变量的乘积是对数正态的。其他人创建的图形看起来是指数型的,但实际上是对数正态的。因此random()*random(()是对数正态分布的(尽管它可能不是独立的,因为数字是从同一个流中提取的)。这在某些应用中可能是期望的。然而,通常最好生成一个随机数并将其转换为对数正态分布数。Random()*Random()可能很难分析。

欲了解更多信息,请访问www.performorama.org查阅我的书。这本书正在建设中,但相关材料已经存在。请注意,章节和章节编号可能会随时间而变化。第8章(概率论)——第8.3.1和8.3.3节,第10章(随机数)。

假设你有一个简单的硬币翻转问题,偶数被认为是正面,奇数被认为是反面。逻辑实现是:

rand() mod 2

在足够大的分布范围内,偶数的数量应该等于奇数的数量。

现在考虑一个小小的调整:

rand() * rand() mod 2

如果其中一个结果是偶数,那么整个结果应该是偶数。考虑4种可能的结果(偶*偶=偶,偶*奇=偶,奇*偶=偶数,奇*奇=奇数)。现在,在足够大的分布范围内,答案应该是75%的时间。

如果我是你,我敢打赌。

这条评论实际上更多的是解释为什么不应该基于您的方法实现自定义随机函数,而不是讨论随机性的数学财产。

答案将是,这取决于,希望rand()*rand(()比rand)更随机,但如下所示:

两个答案都取决于你的值的位数在大多数情况下,你根据伪随机算法生成(它主要是一个数字生成器,依赖于你的计算机时钟,而不是那么随机)。让你的代码更可读(不要用这种咒语来召唤一些随机的巫毒神)。

好吧,如果你检查上面的任何一个,我建议你使用简单的“rand()”。因为你的代码会更可读(不会问自己为什么要写这个,时间……嗯……超过2秒),易于维护(如果你想用super_rand替换rand函数)。

如果你想要更好的随机性,我建议你从任何提供足够噪声的源(无线电静态)流式传输,然后一个简单的rand()就足够了。

好的,所以我会尝试添加一些值来补充其他答案,说你正在创建和使用一个随机数生成器。

随机数发生器是一种具有多种特性的设备(从非常普遍的意义上讲),可以根据需要进行修改。其中一些(来自我)是:

熵:如香农熵分布:统计分布(泊松、正态等)类型:数字的来源(算法、自然事件、组合等)和应用的算法。效率:执行的速度或复杂性。模式:周期、顺序、运行等。也许还有更多。。。

在这里的大多数答案中,分布是主要的关注点,但通过混合和匹配函数和参数,您可以创建生成随机数的新方法,这些随机数将具有不同的特征,其中一些特征乍一看可能不明显。