我如何确定两条直线是否相交,如果相交,在x,y点处?
当前回答
我尝试了很多方法,然后我决定自己写。就是这样:
bool IsBetween (float x, float b1, float b2)
{
return ( ((x >= (b1 - 0.1f)) &&
(x <= (b2 + 0.1f))) ||
((x >= (b2 - 0.1f)) &&
(x <= (b1 + 0.1f))));
}
bool IsSegmentsColliding( POINTFLOAT lineA,
POINTFLOAT lineB,
POINTFLOAT line2A,
POINTFLOAT line2B)
{
float deltaX1 = lineB.x - lineA.x;
float deltaX2 = line2B.x - line2A.x;
float deltaY1 = lineB.y - lineA.y;
float deltaY2 = line2B.y - line2A.y;
if (abs(deltaX1) < 0.01f &&
abs(deltaX2) < 0.01f) // Both are vertical lines
return false;
if (abs((deltaY1 / deltaX1) -
(deltaY2 / deltaX2)) < 0.001f) // Two parallel line
return false;
float xCol = ( ( (deltaX1 * deltaX2) *
(line2A.y - lineA.y)) -
(line2A.x * deltaY2 * deltaX1) +
(lineA.x * deltaY1 * deltaX2)) /
((deltaY1 * deltaX2) - (deltaY2 * deltaX1));
float yCol = 0;
if (deltaX1 < 0.01f) // L1 is a vertical line
yCol = ((xCol * deltaY2) +
(line2A.y * deltaX2) -
(line2A.x * deltaY2)) / deltaX2;
else // L1 is acceptable
yCol = ((xCol * deltaY1) +
(lineA.y * deltaX1) -
(lineA.x * deltaY1)) / deltaX1;
bool isCol = IsBetween(xCol, lineA.x, lineB.x) &&
IsBetween(yCol, lineA.y, lineB.y) &&
IsBetween(xCol, line2A.x, line2B.x) &&
IsBetween(yCol, line2A.y, line2B.y);
return isCol;
}
根据这两个公式:(由直线方程和其他公式简化而来)
其他回答
根据t3chb0t的答案:
int intersezione_linee(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4, int& p_x, int& p_y)
{
//L1: estremi (x1,y1)(x2,y2) L2: estremi (x3,y3)(x3,y3)
int d;
d = (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4);
if(!d)
return 0;
p_x = ((x1*y2-y1*x2)*(x3-x4) - (x1-x2)*(x3*y4-y3*x4))/d;
p_y = ((x1*y2-y1*x2)*(y3-y4) - (y1-y2)*(x3*y4-y3*x4))/d;
return 1;
}
int in_bounding_box(int x1, int y1, int x2, int y2, int p_x, int p_y)
{
return p_x>=x1 && p_x<=x2 && p_y>=y1 && p_y<=y2;
}
int intersezione_segmenti(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4, int& p_x, int& p_y)
{
if (!intersezione_linee(x1,y1,x2,y2,x3,y3,x4,y4,p_x,p_y))
return 0;
return in_bounding_box(x1,y1,x2,y2,p_x,p_y) && in_bounding_box(x3,y3,x4,y4,p_x,p_y);
}
下面是一个基本的c#线段实现,并有相应的交点检测代码。它需要一个名为Vector2f的2D向量/点结构,不过你可以用任何其他具有X/Y属性的类型替换它。如果更适合你的需要,你也可以用double替换float。
这段代码用于我的. net物理库Boing。
public struct LineSegment2f
{
public Vector2f From { get; }
public Vector2f To { get; }
public LineSegment2f(Vector2f @from, Vector2f to)
{
From = @from;
To = to;
}
public Vector2f Delta => new Vector2f(To.X - From.X, To.Y - From.Y);
/// <summary>
/// Attempt to intersect two line segments.
/// </summary>
/// <remarks>
/// Even if the line segments do not intersect, <paramref name="t"/> and <paramref name="u"/> will be set.
/// If the lines are parallel, <paramref name="t"/> and <paramref name="u"/> are set to <see cref="float.NaN"/>.
/// </remarks>
/// <param name="other">The line to attempt intersection of this line with.</param>
/// <param name="intersectionPoint">The point of intersection if within the line segments, or empty..</param>
/// <param name="t">The distance along this line at which intersection would occur, or NaN if lines are collinear/parallel.</param>
/// <param name="u">The distance along the other line at which intersection would occur, or NaN if lines are collinear/parallel.</param>
/// <returns><c>true</c> if the line segments intersect, otherwise <c>false</c>.</returns>
public bool TryIntersect(LineSegment2f other, out Vector2f intersectionPoint, out float t, out float u)
{
var p = From;
var q = other.From;
var r = Delta;
var s = other.Delta;
// t = (q − p) × s / (r × s)
// u = (q − p) × r / (r × s)
var denom = Fake2DCross(r, s);
if (denom == 0)
{
// lines are collinear or parallel
t = float.NaN;
u = float.NaN;
intersectionPoint = default(Vector2f);
return false;
}
var tNumer = Fake2DCross(q - p, s);
var uNumer = Fake2DCross(q - p, r);
t = tNumer / denom;
u = uNumer / denom;
if (t < 0 || t > 1 || u < 0 || u > 1)
{
// line segments do not intersect within their ranges
intersectionPoint = default(Vector2f);
return false;
}
intersectionPoint = p + r * t;
return true;
}
private static float Fake2DCross(Vector2f a, Vector2f b)
{
return a.X * b.Y - a.Y * b.X;
}
}
这个解决方案可能会有所帮助
public static float GetLineYIntesept(PointF p, float slope)
{
return p.Y - slope * p.X;
}
public static PointF FindIntersection(PointF line1Start, PointF line1End, PointF line2Start, PointF line2End)
{
float slope1 = (line1End.Y - line1Start.Y) / (line1End.X - line1Start.X);
float slope2 = (line2End.Y - line2Start.Y) / (line2End.X - line2Start.X);
float yinter1 = GetLineYIntesept(line1Start, slope1);
float yinter2 = GetLineYIntesept(line2Start, slope2);
if (slope1 == slope2 && yinter1 != yinter2)
return PointF.Empty;
float x = (yinter2 - yinter1) / (slope1 - slope2);
float y = slope1 * x + yinter1;
return new PointF(x, y);
}
C和Objective-C
基于Gareth Rees的回答
const AGKLine AGKLineZero = (AGKLine){(CGPoint){0.0, 0.0}, (CGPoint){0.0, 0.0}};
AGKLine AGKLineMake(CGPoint start, CGPoint end)
{
return (AGKLine){start, end};
}
double AGKLineLength(AGKLine l)
{
return CGPointLengthBetween_AGK(l.start, l.end);
}
BOOL AGKLineIntersection(AGKLine l1, AGKLine l2, CGPoint *out_pointOfIntersection)
{
// http://stackoverflow.com/a/565282/202451
CGPoint p = l1.start;
CGPoint q = l2.start;
CGPoint r = CGPointSubtract_AGK(l1.end, l1.start);
CGPoint s = CGPointSubtract_AGK(l2.end, l2.start);
double s_r_crossProduct = CGPointCrossProductZComponent_AGK(r, s);
double t = CGPointCrossProductZComponent_AGK(CGPointSubtract_AGK(q, p), s) / s_r_crossProduct;
double u = CGPointCrossProductZComponent_AGK(CGPointSubtract_AGK(q, p), r) / s_r_crossProduct;
if(t < 0 || t > 1.0 || u < 0 || u > 1.0)
{
if(out_pointOfIntersection != NULL)
{
*out_pointOfIntersection = CGPointZero;
}
return NO;
}
else
{
if(out_pointOfIntersection != NULL)
{
CGPoint i = CGPointAdd_AGK(p, CGPointMultiply_AGK(r, t));
*out_pointOfIntersection = i;
}
return YES;
}
}
CGFloat CGPointCrossProductZComponent_AGK(CGPoint v1, CGPoint v2)
{
return v1.x * v2.y - v1.y * v2.x;
}
CGPoint CGPointSubtract_AGK(CGPoint p1, CGPoint p2)
{
return (CGPoint){p1.x - p2.x, p1.y - p2.y};
}
CGPoint CGPointAdd_AGK(CGPoint p1, CGPoint p2)
{
return (CGPoint){p1.x + p2.x, p1.y + p2.y};
}
CGFloat CGPointCrossProductZComponent_AGK(CGPoint v1, CGPoint v2)
{
return v1.x * v2.y - v1.y * v2.x;
}
CGPoint CGPointMultiply_AGK(CGPoint p1, CGFloat factor)
{
return (CGPoint){p1.x * factor, p1.y * factor};
}
许多函数和结构都是私有的,但是你应该很容易就能知道发生了什么。 这是公开的在这个回购https://github.com/hfossli/AGGeometryKit/
我从《多视图几何》这本书里读到了这些算法
以下文本使用
'作为转置符号
*作为点积
当用作算子时,X作为叉乘
1. 线的定义
点x_vec = (x, y)'在直线ax + by + c = 0上
标记L = (a, b, c)',点为(x, y, 1)'为齐次坐标
直线方程可以写成
(x, y, 1)(a, b, c)' = 0或x' * L = 0
2. 直线交点
我们有两条直线L1=(a1, b1, c1)', L2=(a2, b2, c2)'
假设x是一个点,一个向量,x = L1 x L2 (L1叉乘L2)。
注意,x始终是一个二维点,如果你对(L1xL2)是一个三元素向量,x是一个二维坐标感到困惑,请阅读齐次坐标。
根据三重积,我们知道
L1 * (L1 x L2) = 0, L2 * (L1 x L2) = 0,因为L1,L2共平面
我们用向量x代替L1*x,那么L1*x=0, L2*x=0,这意味着x在L1和L2上,x是交点。
注意,这里x是齐次坐标,如果x的最后一个元素是零,这意味着L1和L2是平行的。