代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

将整数转换为二进制字符串并计数。

PHP解决方案:

substr_count(decbin($integer), '1');

其他回答

我个人使用这个:

  public static int myBitCount(long L){
      int count = 0;
      while (L != 0) {
         count++;
         L ^= L & -L; 
      }
      return count;
  }

大约在1990年,我为RISC机器编写了一个快速比特计数宏。它不使用高级算术(乘法,除法,%),内存提取(太慢),分支(太慢),但它确实假设CPU有一个32位的桶移位器(换句话说,>> 1和>> 32占用相同的周期)。它假定小常数(如6、12、24)加载到寄存器中不需要花费任何代价,或者存储在临时变量中并反复重用。

在这些假设下,在大多数RISC机器上,它在大约16个周期/指令中计算32位。注意,15条指令/周期接近于周期或指令数量的下界,因为似乎至少需要3条指令(掩码、移位、运算符)才能将加数的数量减半,因此log_2(32) = 5,5 x 3 = 15条指令是准下界。

#define BitCount(X,Y)           \
                Y = X - ((X >> 1) & 033333333333) - ((X >> 2) & 011111111111); \
                Y = ((Y + (Y >> 3)) & 030707070707); \
                Y =  (Y + (Y >> 6)); \
                Y = (Y + (Y >> 12) + (Y >> 24)) & 077;

这是第一步也是最复杂的一步:

input output
AB    CD             Note
00    00             = AB
01    01             = AB
10    01             = AB - (A >> 1) & 0x1
11    10             = AB - (A >> 1) & 0x1

所以如果我取上面的第一列(A),右移1位,然后从AB减去它,我就得到了输出(CD)。扩展到3位类似;如果你愿意,你可以用一个8行布尔表来检查它。

不吉利

private int get_bits_set(int v)
{
    int c; // 'c' accumulates the total bits set in 'v'
    for (c = 0; v>0; c++)
    {
        v &= v - 1; // Clear the least significant bit set
    }
    return c;
}
int countBits(int x)
{
    int n = 0;
    if (x) do n++;
           while(x=x&(x-1));
    return n;
}   

或者:

int countBits(int x) { return (x)? 1+countBits(x&(x-1)): 0; }

在我最初的回答7年半之后,@PeterMortensen质疑这是否是有效的C语法。我发布了一个在线编译器的链接,显示它实际上是完全有效的语法(代码如下)。

#include <stdio.h>
int countBits(int x)
{
    int n = 0;
    if (x) do n++;           /* Totally Normal Valid code. */
           while(x=x&(x-1)); /* Nothing to see here.       */
    return n;
}   
 
int main(void) {
    printf("%d\n", countBits(25));
    return 0;
}
 

输出:

3

如果你想重新写清楚,它看起来是这样的:

if (x)
{
    do
    {
        n++;
    } while(x=x&(x-1));
}

但在我看来,这太过分了。

然而,我也意识到函数可以变得更短,但可能更神秘,写为:

int countBits(int x)
{
    int n = 0;
    while (x) x=(n++,x&(x-1));
    return n;
}   
public class BinaryCounter {

private int N;

public BinaryCounter(int N) {
    this.N = N;
}

public static void main(String[] args) {

    BinaryCounter counter=new BinaryCounter(7);     
    System.out.println("Number of ones is "+ counter.count());

}

public int count(){
    if(N<=0) return 0;
    int counter=0;
    int K = 0;
    do{
        K = biggestPowerOfTwoSmallerThan(N);
        N = N-K;
        counter++;
    }while (N != 0);
    return counter;

}

private int biggestPowerOfTwoSmallerThan(int N) {
    if(N==1) return 1;
    for(int i=0;i<N;i++){
        if(Math.pow(2, i) > N){
            int power = i-1;
            return (int) Math.pow(2, power);
        }
    }
    return 0;
}
}