代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
我总是在竞争性编程中使用它,它很容易写,而且效率很高:
#include <bits/stdc++.h>
using namespace std;
int countOnes(int n) {
bitset<32> b(n);
return b.count();
}
其他回答
我在任何地方都没见过这种方法:
int nbits(unsigned char v) {
return ((((v - ((v >> 1) & 0x55)) * 0x1010101) & 0x30c00c03) * 0x10040041) >> 0x1c;
}
它每字节工作一次,所以对于一个32位整数,它必须被调用四次。它源于横向加法,但它使用两个32位乘法将指令数量减少到只有7条。
大多数当前的C编译器将使用SIMD (SSE2)指令优化这个函数,当请求的数量是4的倍数时,它变得非常有竞争力。它是可移植的,可以定义为宏或内联函数,并且不需要数据表。
这种方法可以扩展为一次处理16位,使用64位乘法。但是,当所有16位都被设置时,它会失败,返回0,所以它只能在0xFFFF输入值不存在时使用。由于64位操作,它也比较慢,并且没有很好地优化。
如果你使用c++,另一个选择是使用模板元编程:
// recursive template to sum bits in an int
template <int BITS>
int countBits(int val) {
// return the least significant bit plus the result of calling ourselves with
// .. the shifted value
return (val & 0x1) + countBits<BITS-1>(val >> 1);
}
// template specialisation to terminate the recursion when there's only one bit left
template<>
int countBits<1>(int val) {
return val & 0x1;
}
用法如下:
// to count bits in a byte/char (this returns 8)
countBits<8>( 255 )
// another byte (this returns 7)
countBits<8>( 254 )
// counting bits in a word/short (this returns 1)
countBits<16>( 256 )
当然,你可以进一步扩展这个模板来使用不同的类型(甚至是自动检测位大小),但为了清晰起见,我让它保持简单。
edit:忘了说这很好,因为它应该在任何c++编译器中工作,它基本上只是为你展开循环,如果一个常量值用于比特计数(换句话说,我很确定这是你能找到的最快的通用方法)
int countBits(int x)
{
int n = 0;
if (x) do n++;
while(x=x&(x-1));
return n;
}
或者:
int countBits(int x) { return (x)? 1+countBits(x&(x-1)): 0; }
在我最初的回答7年半之后,@PeterMortensen质疑这是否是有效的C语法。我发布了一个在线编译器的链接,显示它实际上是完全有效的语法(代码如下)。
#include <stdio.h>
int countBits(int x)
{
int n = 0;
if (x) do n++; /* Totally Normal Valid code. */
while(x=x&(x-1)); /* Nothing to see here. */
return n;
}
int main(void) {
printf("%d\n", countBits(25));
return 0;
}
输出:
3
如果你想重新写清楚,它看起来是这样的:
if (x)
{
do
{
n++;
} while(x=x&(x-1));
}
但在我看来,这太过分了。
然而,我也意识到函数可以变得更短,但可能更神秘,写为:
int countBits(int x)
{
int n = 0;
while (x) x=(n++,x&(x-1));
return n;
}
Python的解决方案:
def hammingWeight(n: int) -> int:
sums = 0
while (n!=0):
sums+=1
n = n &(n-1)
return sums
在二进制表示中,n中最不有效的1位总是对应n - 1中的0位。因此,对n和n - 1这两个数进行and运算总是将n中最不有效的1位翻转为0,并保持所有其他位相同。
我认为最快的方法——不使用查找表和popcount——是以下方法。它仅通过12次操作来计数设置位。
int popcount(int v) {
v = v - ((v >> 1) & 0x55555555); // put count of each 2 bits into those 2 bits
v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // put count of each 4 bits into those 4 bits
return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
}
它之所以有效,是因为你可以通过将设置位分为两半来计算总设置位的数量,计算两半设置位的数量,然后将它们相加。也被称为分而治之范式。让我们来详细谈谈。
v = v - ((v >> 1) & 0x55555555);
两位位数可以是0b00、0b01或0b10。让我们试着在2位上解决这个问题。
---------------------------------------------
| v | (v >> 1) & 0b0101 | v - x |
---------------------------------------------
0b00 0b00 0b00
0b01 0b00 0b01
0b10 0b01 0b01
0b11 0b01 0b10
这就是所需要的:最后一列显示每两个位对中设置位的计数。如果两个比特数>= 2 (0b10),则产生0b01,否则产生0b00。
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
这句话应该很容易理解。在第一个操作之后,我们每两个比特中就有一个set位的计数,现在我们每4个比特中就有一个set位的计数。
v & 0b00110011 //masks out even two bits
(v >> 2) & 0b00110011 // masks out odd two bits
然后我们把上面的结果加起来,得到4位的集合位总数。最后一个陈述是最棘手的。
c = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
让我们进一步分析一下……
v + (v >> 4)
这和第二种说法很相似;我们以4为一组来计数集合位。因为我们之前的运算,我们知道每一个咬痕都有一个集合位的计数。让我们看一个例子。假设我们有字节0b01000010。这意味着第一个啃食有它的4位设置,第二个有它的2位设置。现在我们把这些小块加在一起。
v = 0b01000010
(v >> 4) = 0b00000100
v + (v >> 4) = 0b01000010 + 0b00000100
它为我们提供了一个字节中set位的计数,在第二个nibble 0b01000110中,因此我们掩码了该数字中所有字节的前四个字节(丢弃它们)。
0b01000110 & 0x0F = 0b00000110
现在每个字节都有一个集合位的计数。我们需要把它们全部加起来。诀窍是将结果乘以0b10101010,它有一个有趣的属性。如果我们的数字有四个字节,A B C D,它将产生一个新的数字,包含这些字节A+B+C+D B+C+D C+D。一个4字节的数字最多可以设置32位,可以表示为0b00100000。
我们现在需要的是第一个字节,它是所有字节中所有set位的和,我们通过>> 24得到它。该算法是为32位字设计的,但可以很容易地修改为64位字。