代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
有许多算法来计数设置位;但是我认为最好的一个是更快的一个! 您可以在本页查看详细信息:
Bit Twiddling Hacks
我建议这样做:
使用64位指令计数在14,24或32位字中设置的位
unsigned int v; // count the number of bits set in v
unsigned int c; // c accumulates the total bits set in v
// option 1, for at most 14-bit values in v:
c = (v * 0x200040008001ULL & 0x111111111111111ULL) % 0xf;
// option 2, for at most 24-bit values in v:
c = ((v & 0xfff) * 0x1001001001001ULL & 0x84210842108421ULL) % 0x1f;
c += (((v & 0xfff000) >> 12) * 0x1001001001001ULL & 0x84210842108421ULL)
% 0x1f;
// option 3, for at most 32-bit values in v:
c = ((v & 0xfff) * 0x1001001001001ULL & 0x84210842108421ULL) % 0x1f;
c += (((v & 0xfff000) >> 12) * 0x1001001001001ULL & 0x84210842108421ULL) %
0x1f;
c += ((v >> 24) * 0x1001001001001ULL & 0x84210842108421ULL) % 0x1f;
这种方法需要64位CPU和快速模除法来提高效率。第一个选项只需要3个操作;第二种选择需要10;第三种选择需要15分钟。
其他回答
摘自《黑客的喜悦》第66页,图5-2
int pop(unsigned x)
{
x = x - ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = x + (x >> 8);
x = x + (x >> 16);
return x & 0x0000003F;
}
执行大约20条指令(依赖于arch),没有分支。黑客的喜悦是令人愉快的!强烈推荐。
public class BinaryCounter {
private int N;
public BinaryCounter(int N) {
this.N = N;
}
public static void main(String[] args) {
BinaryCounter counter=new BinaryCounter(7);
System.out.println("Number of ones is "+ counter.count());
}
public int count(){
if(N<=0) return 0;
int counter=0;
int K = 0;
do{
K = biggestPowerOfTwoSmallerThan(N);
N = N-K;
counter++;
}while (N != 0);
return counter;
}
private int biggestPowerOfTwoSmallerThan(int N) {
if(N==1) return 1;
for(int i=0;i<N;i++){
if(Math.pow(2, i) > N){
int power = i-1;
return (int) Math.pow(2, power);
}
}
return 0;
}
}
将整数转换为二进制字符串并计数。
PHP解决方案:
substr_count(decbin($integer), '1');
我在任何地方都没见过这种方法:
int nbits(unsigned char v) {
return ((((v - ((v >> 1) & 0x55)) * 0x1010101) & 0x30c00c03) * 0x10040041) >> 0x1c;
}
它每字节工作一次,所以对于一个32位整数,它必须被调用四次。它源于横向加法,但它使用两个32位乘法将指令数量减少到只有7条。
大多数当前的C编译器将使用SIMD (SSE2)指令优化这个函数,当请求的数量是4的倍数时,它变得非常有竞争力。它是可移植的,可以定义为宏或内联函数,并且不需要数据表。
这种方法可以扩展为一次处理16位,使用64位乘法。但是,当所有16位都被设置时,它会失败,返回0,所以它只能在0xFFFF输入值不存在时使用。由于64位操作,它也比较慢,并且没有很好地优化。
另一个汉明权重算法,如果你使用的是BMI2 CPU:
the_weight = __tzcnt_u64(~_pext_u64(data[i], data[i]));