代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
有许多算法来计数设置位;但是我认为最好的一个是更快的一个! 您可以在本页查看详细信息:
Bit Twiddling Hacks
我建议这样做:
使用64位指令计数在14,24或32位字中设置的位
unsigned int v; // count the number of bits set in v
unsigned int c; // c accumulates the total bits set in v
// option 1, for at most 14-bit values in v:
c = (v * 0x200040008001ULL & 0x111111111111111ULL) % 0xf;
// option 2, for at most 24-bit values in v:
c = ((v & 0xfff) * 0x1001001001001ULL & 0x84210842108421ULL) % 0x1f;
c += (((v & 0xfff000) >> 12) * 0x1001001001001ULL & 0x84210842108421ULL)
% 0x1f;
// option 3, for at most 32-bit values in v:
c = ((v & 0xfff) * 0x1001001001001ULL & 0x84210842108421ULL) % 0x1f;
c += (((v & 0xfff000) >> 12) * 0x1001001001001ULL & 0x84210842108421ULL) %
0x1f;
c += ((v >> 24) * 0x1001001001001ULL & 0x84210842108421ULL) % 0x1f;
这种方法需要64位CPU和快速模除法来提高效率。第一个选项只需要3个操作;第二种选择需要10;第三种选择需要15分钟。
其他回答
另一个汉明权重算法,如果你使用的是BMI2 CPU:
the_weight = __tzcnt_u64(~_pext_u64(data[i], data[i]));
public class BinaryCounter {
private int N;
public BinaryCounter(int N) {
this.N = N;
}
public static void main(String[] args) {
BinaryCounter counter=new BinaryCounter(7);
System.out.println("Number of ones is "+ counter.count());
}
public int count(){
if(N<=0) return 0;
int counter=0;
int K = 0;
do{
K = biggestPowerOfTwoSmallerThan(N);
N = N-K;
counter++;
}while (N != 0);
return counter;
}
private int biggestPowerOfTwoSmallerThan(int N) {
if(N==1) return 1;
for(int i=0;i<N;i++){
if(Math.pow(2, i) > N){
int power = i-1;
return (int) Math.pow(2, power);
}
}
return 0;
}
}
对于JavaScript,你可以使用一个查找表来计算一个32位值的设置位的数量(这段代码可以很容易地翻译成C语言)。此外,添加了8位和16位版本,以供通过网络搜索查找的人使用。
const COUNT_BITS_TABLE = makeLookupTable() function makeLookupTable() { const table = new Uint8Array(256) for (let i = 0; i < 256; i++) { table[i] = (i & 1) + table[(i / 2) | 0]; } return table } function countOneBits32(n) { return COUNT_BITS_TABLE[n & 0xff] + COUNT_BITS_TABLE[(n >> 8) & 0xff] + COUNT_BITS_TABLE[(n >> 16) & 0xff] + COUNT_BITS_TABLE[(n >> 24) & 0xff]; } function countOneBits16(n) { return COUNT_BITS_TABLE[n & 0xff] + COUNT_BITS_TABLE[(n >> 8) & 0xff] } function countOneBits8(n) { return COUNT_BITS_TABLE[n & 0xff] } console.log('countOneBits32', countOneBits32(0b10101010000000001010101000000000)) console.log('countOneBits32', countOneBits32(0b10101011110000001010101000000000)) console.log('countOneBits16', countOneBits16(0b1010101000000000)) console.log('countOneBits8', countOneBits8(0b10000010))
我给出了两个算法来回答这个问题,
package countSetBitsInAnInteger;
import java.util.Scanner;
public class UsingLoop {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
try {
System.out.println("Enter a integer number to check for set bits in it");
int n = in.nextInt();
System.out.println("Using while loop, we get the number of set bits as: " + usingLoop(n));
System.out.println("Using Brain Kernighan's Algorithm, we get the number of set bits as: " + usingBrainKernighan(n));
System.out.println("Using ");
}
finally {
in.close();
}
}
private static int usingBrainKernighan(int n) {
int count = 0;
while(n > 0) {
n& = (n-1);
count++;
}
return count;
}
/*
Analysis:
Time complexity = O(lgn)
Space complexity = O(1)
*/
private static int usingLoop(int n) {
int count = 0;
for(int i=0; i<32; i++) {
if((n&(1 << i)) != 0)
count++;
}
return count;
}
/*
Analysis:
Time Complexity = O(32) // Maybe the complexity is O(lgn)
Space Complexity = O(1)
*/
}
int bitcount(unsigned int n)
{
int count=0;
while(n)
{
count += n & 0x1u;
n >>= 1;
}
return count;
}
迭代的“计数”运行的时间与总比特数成比例。它只是循环遍历所有位,因为while条件而稍微提前终止。如果1'S或集合位是稀疏的且在最低有效位之间,则很有用。