代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

你可以:

while(n){
    n = n & (n-1);
    count++;
}

这背后的逻辑是n-1位从n的最右边的集合位倒出来。

如果n=6,即110,那么5是101,位从n的最右边的集合位倒出来。

因此,如果我们&这两个,我们将在每次迭代中使最右边的位为0,并且总是到下一个最右边的集位。因此,计数设置位。当每一位都被设置时,最糟糕的时间复杂度将是O(log n)。

其他回答

你可以这样做:

int countSetBits(int n)
{
    n=((n&0xAAAAAAAA)>>1) + (n&0x55555555);
    n=((n&0xCCCCCCCC)>>2) + (n&0x33333333);
    n=((n&0xF0F0F0F0)>>4) + (n&0x0F0F0F0F);
    n=((n&0xFF00FF00)>>8) + (n&0x00FF00FF);
    return n;
}

int main()
{
    int n=10;
    printf("Number of set bits: %d",countSetBits(n));
     return 0;
}

海王: http://ideone.com/JhwcX

工作原理如下:

首先,所有的偶数位都向右移动,并与奇数位相加,以计算两组位的数量。 然后我们两人一组,然后四个人,以此类推。

你可以使用内置函数__builtin_popcount()。c++中没有__builtin_popcount,但它是GCC编译器的内置函数。这个函数返回一个整数中的设置位数。

int __builtin_popcount (unsigned int x);

参考:Bit Twiddling Hacks

如果您恰好使用Java,则内置方法Integer。bitCount会这样做。

我给出了两个算法来回答这个问题,

package countSetBitsInAnInteger;

import java.util.Scanner;

public class UsingLoop {

    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        try {
            System.out.println("Enter a integer number to check for set bits in it");
            int n = in.nextInt();
            System.out.println("Using while loop, we get the number of set bits as: " + usingLoop(n));
            System.out.println("Using Brain Kernighan's Algorithm, we get the number of set bits as: " + usingBrainKernighan(n));
            System.out.println("Using ");
        }
        finally {
            in.close();
        }
    }

    private static int usingBrainKernighan(int n) {
        int count = 0;
        while(n > 0) {
            n& = (n-1);
            count++;
        }
        return count;
    }

    /*
        Analysis:
            Time complexity = O(lgn)
            Space complexity = O(1)
    */

    private static int usingLoop(int n) {
        int count = 0;
        for(int i=0; i<32; i++) {
            if((n&(1 << i)) != 0)
                count++;
        }
        return count;
    }

    /*
        Analysis:
            Time Complexity = O(32) // Maybe the complexity is O(lgn)
            Space Complexity = O(1)
    */
}

将整数转换为二进制字符串并计数。

PHP解决方案:

substr_count(decbin($integer), '1');