代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
在Java 8或9中只调用Integer。bitCount。
其他回答
有许多算法来计数设置位;但是我认为最好的一个是更快的一个! 您可以在本页查看详细信息:
Bit Twiddling Hacks
我建议这样做:
使用64位指令计数在14,24或32位字中设置的位
unsigned int v; // count the number of bits set in v
unsigned int c; // c accumulates the total bits set in v
// option 1, for at most 14-bit values in v:
c = (v * 0x200040008001ULL & 0x111111111111111ULL) % 0xf;
// option 2, for at most 24-bit values in v:
c = ((v & 0xfff) * 0x1001001001001ULL & 0x84210842108421ULL) % 0x1f;
c += (((v & 0xfff000) >> 12) * 0x1001001001001ULL & 0x84210842108421ULL)
% 0x1f;
// option 3, for at most 32-bit values in v:
c = ((v & 0xfff) * 0x1001001001001ULL & 0x84210842108421ULL) % 0x1f;
c += (((v & 0xfff000) >> 12) * 0x1001001001001ULL & 0x84210842108421ULL) %
0x1f;
c += ((v >> 24) * 0x1001001001001ULL & 0x84210842108421ULL) % 0x1f;
这种方法需要64位CPU和快速模除法来提高效率。第一个选项只需要3个操作;第二种选择需要10;第三种选择需要15分钟。
天真的解决方案
时间复杂度为O(no。n的比特数)
int countSet(unsigned int n)
{
int res=0;
while(n!=0){
res += (n&1);
n >>= 1; // logical right shift, like C unsigned or Java >>>
}
return res;
}
Brian Kerningam的算法
时间复杂度为O(n中设置位的个数)
int countSet(unsigned int n)
{
int res=0;
while(n != 0)
{
n = (n & (n-1));
res++;
}
return res;
}
32位数字的查找表方法-在这种方法中,我们将32位数字分解为4个8位数字的块
时间复杂度为O(1)
static unsigned char table[256]; /* the table size is 256,
the number of values i&0xFF (8 bits) can have */
void initialize() //holds the number of set bits from 0 to 255
{
table[0]=0;
for(unsigned int i=1;i<256;i++)
table[i]=(i&1)+table[i>>1];
}
int countSet(unsigned int n)
{
// 0xff is hexadecimal representation of 8 set bits.
int res=table[n & 0xff];
n=n>>8;
res=res+ table[n & 0xff];
n=n>>8;
res=res+ table[n & 0xff];
n=n>>8;
res=res+ table[n & 0xff];
return res;
}
public class BinaryCounter {
private int N;
public BinaryCounter(int N) {
this.N = N;
}
public static void main(String[] args) {
BinaryCounter counter=new BinaryCounter(7);
System.out.println("Number of ones is "+ counter.count());
}
public int count(){
if(N<=0) return 0;
int counter=0;
int K = 0;
do{
K = biggestPowerOfTwoSmallerThan(N);
N = N-K;
counter++;
}while (N != 0);
return counter;
}
private int biggestPowerOfTwoSmallerThan(int N) {
if(N==1) return 1;
for(int i=0;i<N;i++){
if(Math.pow(2, i) > N){
int power = i-1;
return (int) Math.pow(2, power);
}
}
return 0;
}
}
"最佳算法"是什么意思?短码还是长码?您的代码看起来非常优雅,并且具有恒定的执行时间。代码也很短。
但如果速度是主要因素,而不是代码大小,那么我认为以下方法可以更快:
static final int[] BIT_COUNT = { 0, 1, 1, ... 256 values with a bitsize of a byte ... };
static int bitCountOfByte( int value ){
return BIT_COUNT[ value & 0xFF ];
}
static int bitCountOfInt( int value ){
return bitCountOfByte( value )
+ bitCountOfByte( value >> 8 )
+ bitCountOfByte( value >> 16 )
+ bitCountOfByte( value >> 24 );
}
我认为这不会更快的64位值,但32位值可以更快。
我个人使用这个:
public static int myBitCount(long L){
int count = 0;
while (L != 0) {
count++;
L ^= L & -L;
}
return count;
}