似乎没有函数可以简单地计算numpy/scipy的移动平均值,这导致了复杂的解决方案。

我的问题有两个方面:

用numpy(正确地)实现移动平均的最简单方法是什么? 既然这似乎不是小事,而且容易出错,有没有一个很好的理由不包括电池在这种情况下?


当前回答

如果你已经有一个已知大小的数组

import numpy as np                                         
M=np.arange(12)
                                                               
avg=[]                                                         
i=0
while i<len(M)-2: #for n point average len(M) - (n-1)
        avg.append((M[i]+M[i+1]+M[i+2])/3) #n is denominator                       
        i+=1     
                                                                                                    
print(avg)

其他回答

所有的答案似乎都集中在预先计算的列表的情况下。对于实际运行的用例,数字一个接一个地进来,这里有一个简单的类,它提供了对最后N个值求平均的服务:

import numpy as np
class RunningAverage():
    def __init__(self, stack_size):
        self.stack = [0 for _ in range(stack_size)]
        self.ptr = 0
        self.full_cycle = False
    def add(self,value):
        self.stack[self.ptr] = value
        self.ptr += 1
        if self.ptr == len(self.stack):
            self.full_cycle = True
            self.ptr = 0
    def get_avg(self):
        if self.full_cycle:
            return np.mean(self.stack)
        else:
            return np.mean(self.stack[:self.ptr])

用法:

N = 50  # size of the averaging window
run_avg = RunningAverage(N)
for i in range(1000):
    value = <my computation>
    run_avg.add(value)
    if i % 20 ==0: # print once in 20 iters:
        print(f'the average value is {run_avg.get_avg()}')

通过比较下面的解决方案与使用cumsum of numpy的解决方案,这个解决方案几乎花费了一半的时间。这是因为它不需要遍历整个数组来做cumsum,然后做所有的减法。此外,如果数组很大且数量很大(可能溢出),cumsum可能是“危险的”。当然,这里也存在危险,但至少我们只把重要的数字加在一起。

def moving_average(array_numbers, n):
    if n > len(array_numbers):
      return []
    temp_sum = sum(array_numbers[:n])
    averages = [temp_sum / float(n)]
    for first_index, item in enumerate(array_numbers[n:]):
        temp_sum += item - array_numbers[first_index]
        averages.append(temp_sum / float(n))
    return averages

下面是一个使用numba的快速实现(注意类型)。注意它确实包含移位的nan。

import numpy as np
import numba as nb

@nb.jit(nb.float64[:](nb.float64[:],nb.int64),
        fastmath=True,nopython=True)
def moving_average( array, window ):    
    ret = np.cumsum(array)
    ret[window:] = ret[window:] - ret[:-window]
    ma = ret[window - 1:] / window
    n = np.empty(window-1); n.fill(np.nan)
    return np.concatenate((n.ravel(), ma.ravel())) 

我要么使用公认答案的解决方案,稍微修改以使输出和输入的长度相同,要么使用另一个答案的评论中提到的熊猫版本。我在这里用一个可重复的例子来总结两者,以供将来参考:

import numpy as np
import pandas as pd

def moving_average(a, n):
    ret = np.cumsum(a, dtype=float)
    ret[n:] = ret[n:] - ret[:-n]
    return ret / n

def moving_average_centered(a, n):
    return pd.Series(a).rolling(window=n, center=True).mean().to_numpy()

A = [0, 0, 1, 2, 4, 5, 4]
print(moving_average(A, 3))    
# [0.         0.         0.33333333 1.         2.33333333 3.66666667 4.33333333]
print(moving_average_centered(A, 3))
# [nan        0.33333333 1.         2.33333333 3.66666667 4.33333333 nan       ]

如果你只想要一个简单的非加权移动平均,你可以很容易地用np实现它。cumsum,可能比基于FFT的方法更快:

修正了Bean在代码中发现的偏离一的错误索引。编辑

def moving_average(a, n=3) :
    ret = np.cumsum(a, dtype=float)
    ret[n:] = ret[n:] - ret[:-n]
    return ret[n - 1:] / n

>>> a = np.arange(20)
>>> moving_average(a)
array([  1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,   9.,  10.,  11.,
        12.,  13.,  14.,  15.,  16.,  17.,  18.])
>>> moving_average(a, n=4)
array([  1.5,   2.5,   3.5,   4.5,   5.5,   6.5,   7.5,   8.5,   9.5,
        10.5,  11.5,  12.5,  13.5,  14.5,  15.5,  16.5,  17.5])

所以我猜答案是:它真的很容易实现,也许numpy已经有了一些专门的功能。