我设置了dict2 = dict1。当我编辑dict2时,原来的dict1也改变了。为什么?

>>> dict1 = {"key1": "value1", "key2": "value2"}
>>> dict2 = dict1
>>> dict2["key2"] = "WHY?!"
>>> dict1
{'key2': 'WHY?!', 'key1': 'value1'}

当前回答

>>> dict2 = dict1
# dict2 is bind to the same Dict object which binds to dict1, so if you modify dict2, you will modify the dict1

复制Dict对象有很多方法,我简单用一下

dict_1 = {
           'a':1,
           'b':2
         }
dict_2 = {}
dict_2.update(dict_1)

其他回答

下面的代码是在dicts上的,它遵循json语法,比deepcopy快3倍以上

def CopyDict(dSrc):
    try:
        return json.loads(json.dumps(dSrc))
    except Exception as e:
        Logger.warning("Can't copy dict the preferred way:"+str(dSrc))
        return deepcopy(dSrc)

虽然dict.copy()和dict(dict1)会生成一个副本,但它们只是浅副本。如果你想要一个深度拷贝,copy.deepcopy(dict1)是必需的。一个例子:

>>> source = {'a': 1, 'b': {'m': 4, 'n': 5, 'o': 6}, 'c': 3}
>>> copy1 = source.copy()
>>> copy2 = dict(source)
>>> import copy
>>> copy3 = copy.deepcopy(source)
>>> source['a'] = 10  # a change to first-level properties won't affect copies
>>> source
{'a': 10, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
>>> copy1
{'a': 1, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
>>> copy2
{'a': 1, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
>>> copy3
{'a': 1, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
>>> source['b']['m'] = 40  # a change to deep properties WILL affect shallow copies 'b.m' property
>>> source
{'a': 10, 'c': 3, 'b': {'m': 40, 'o': 6, 'n': 5}}
>>> copy1
{'a': 1, 'c': 3, 'b': {'m': 40, 'o': 6, 'n': 5}}
>>> copy2
{'a': 1, 'c': 3, 'b': {'m': 40, 'o': 6, 'n': 5}}
>>> copy3  # Deep copy's 'b.m' property is unaffected
{'a': 1, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}

关于浅拷贝和深拷贝,请参阅Python复制模块docs:

浅复制和深复制之间的区别只与复合对象(包含其他对象的对象,如列表或类实例)相关:

浅拷贝构造一个新的复合对象,然后(在可能的范围内)将对原始对象的引用插入其中。 深度复制构造一个新的复合对象,然后递归地将原始对象中的对象的副本插入其中。

如果你的字典是映射类型,你不能.copy()它,但你可以

dict2 = dict1 | {}

它有点模糊,与copy.copy(dict1)相比,我不能说它的性能如何,但它非常简洁。

正如其他人解释的那样,内置字典不能做你想做的事情。但是在Python2(可能还有python3)中,你可以很容易地创建一个ValueDict类,使用=进行复制,这样你就可以确保原始的类不会改变。

class ValueDict(dict):

    def __ilshift__(self, args):
        result = ValueDict(self)
        if isinstance(args, dict):
            dict.update(result, args)
        else:
            dict.__setitem__(result, *args)
        return result # Pythonic LVALUE modification

    def __irshift__(self, args):
        result = ValueDict(self)
        dict.__delitem__(result, args)
        return result # Pythonic LVALUE modification

    def __setitem__(self, k, v):
        raise AttributeError, \
            "Use \"value_dict<<='%s', ...\" instead of \"d[%s] = ...\"" % (k,k)

    def __delitem__(self, k):
        raise AttributeError, \
            "Use \"value_dict>>='%s'\" instead of \"del d[%s]" % (k,k)

    def update(self, d2):
        raise AttributeError, \
            "Use \"value_dict<<=dict2\" instead of \"value_dict.update(dict2)\""


# test
d = ValueDict()

d <<='apples', 5
d <<='pears', 8
print "d =", d

e = d
e <<='bananas', 1
print "e =", e
print "d =", d

d >>='pears'
print "d =", d
d <<={'blueberries': 2, 'watermelons': 315}
print "d =", d
print "e =", e
print "e['bananas'] =", e['bananas']


# result
d = {'apples': 5, 'pears': 8}
e = {'apples': 5, 'pears': 8, 'bananas': 1}
d = {'apples': 5, 'pears': 8}
d = {'apples': 5}
d = {'watermelons': 315, 'blueberries': 2, 'apples': 5}
e = {'apples': 5, 'pears': 8, 'bananas': 1}
e['bananas'] = 1

# e[0]=3
# would give:
# AttributeError: Use "value_dict<<='0', ..." instead of "d[0] = ..."

请参考这里讨论的左值修改模式:Python 2.7 -用于左值修改的干净语法。关键的观察是,str和int在Python中表现为值(即使它们实际上是不可变的对象)。在观察的同时,请注意str或int并没有什么神奇的特殊之处。dict可以以几乎相同的方式使用,我可以想到ValueDict有意义的许多情况。

在python 3.5+上,有一种更简单的方法来实现浅拷贝,即使用** unpackaging操作符。由Pep 448定义。

>>>dict1 = {"key1": "value1", "key2": "value2"}
>>>dict2 = {**dict1}
>>>print(dict2)
{'key1': 'value1', 'key2': 'value2'}
>>>dict2["key2"] = "WHY?!"
>>>print(dict1)
{'key1': 'value1', 'key2': 'value2'}
>>>print(dict2)
{'key1': 'value1', 'key2': 'WHY?!'}

**将字典解包到一个新字典中,然后分配给dict2。

我们还可以确认每个字典都有一个不同的id。

>>>id(dict1)
 178192816

>>>id(dict2)
 178192600

如果需要深度复制,那么copy.deepcopy()仍然是可行的方法。