我想将两个词典融入一个新的词典。

x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)

>>> z
{'a': 1, 'b': 3, 'c': 4}

每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。


当前回答

z = MergeDict(x, y)

当使用这个新对象时,它将像合并词典一样行事,但它将有持续的创作时间和持续的记忆脚印,同时让原始词典无触摸。

当然,如果你使用结果很多,那么你会在某个时候达到创建一个真正的合并词典会是最快的解决方案的界限。

a = { 'x': 3, 'y': 4 }
b = MergeDict(a)  # we merge just one dict
b['x'] = 5
print b  # will print {'x': 5, 'y': 4}
print a  # will print {'y': 4, 'x': 3}

class MergeDict(object):
  def __init__(self, *originals):
    self.originals = ({},) + originals[::-1]  # reversed

  def __getitem__(self, key):
    for original in self.originals:
      try:
        return original[key]
      except KeyError:
        pass
    raise KeyError(key)

  def __setitem__(self, key, value):
    self.originals[0][key] = value

  def __iter__(self):
    return iter(self.keys())

  def __repr__(self):
    return '%s(%s)' % (
      self.__class__.__name__,
      ', '.join(repr(original)
          for original in reversed(self.originals)))

  def __str__(self):
    return '{%s}' % ', '.join(
        '%r: %r' % i for i in self.iteritems())

  def iteritems(self):
    found = set()
    for original in self.originals:
      for k, v in original.iteritems():
        if k not in found:
          yield k, v
          found.add(k)

  def items(self):
    return list(self.iteritems())

  def keys(self):
    return list(k for k, _ in self.iteritems())

  def values(self):
    return list(v for _, v in self.iteritems())

其他回答

如果你認為Lambdas是壞的,那麼不要再閱讀。 如要求,你可以用一個表達寫下快速和記憶效益的解決方案:

x = {'a':1, 'b':2}
y = {'b':10, 'c':11}
z = (lambda a, b: (lambda a_copy: a_copy.update(b) or a_copy)(a.copy()))(x, y)
print z
{'a': 1, 'c': 11, 'b': 10}
print x
{'a': 1, 'b': 2}

如上所述,使用两行或写一个函数可能是一个更好的方式去。

z1 = dict(x.items() + y.items())
z2 = dict(x, **y)

在我的机器上,至少(一个相当常见的x86_64运行Python 2.5.2),替代Z2不仅更短,更简单,而且更快。

% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z1=dict(x.items() + y.items())'
100000 loops, best of 3: 5.67 usec per loop
% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z2=dict(x, **y)' 
100000 loops, best of 3: 1.53 usec per loop

示例2:不超越的字典,将252条短线地图到整条,反之亦然:

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z1=dict(x.items() + y.items())'
1000 loops, best of 3: 260 usec per loop
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z2=dict(x, **y)'               
10000 loops, best of 3: 26.9 usec per loop

z2赢得了大约10的因素,这在我的书中是一个相当大的胜利!

在比较这两个之后,我想知道 z1 的不良性能是否可以归功于构建两个项目列表的顶端,这反过来导致我想知道这个变量是否会更好地工作:

from itertools import chain
z3 = dict(chain(x.iteritems(), y.iteritems()))

% python -m timeit -s 'from itertools import chain; from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z3=dict(chain(x.iteritems(), y.iteritems()))'
10000 loops, best of 3: 66 usec per loop

z0 = dict(x)
z0.update(y)

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z0=dict(x); z0.update(y)'
10000 loops, best of 3: 26.9 usec per loop

你也可以这样写作

z0 = x.copy()
z0.update(y)

正如托尼所做的那样,但(不令人惊讶)评分的差异显然没有对性能的测量效应。 使用任何人看起来对你是正确的。

这个问题被标签为Python-3x,但考虑到这是一个相对较新的补充,并且最受欢迎的,接受的答案与Python 2.x解决方案广泛处理,我敢添加一个线条,引用一个令人兴奋的功能的Python 2.x列表理解,即名字泄漏。

$ python2
Python 2.7.13 (default, Jan 19 2017, 14:48:08) 
[GCC 6.3.0 20170118] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> [z.update(d) for z in [{}] for d in (x, y)]
[None, None]
>>> z
{'a': 1, 'c': 11, 'b': 10}
>>> ...

我很高兴说上面的内容不再在任何Python 3版本上工作。

在这里和其他地方绘制想法,我已经理解了一个功能:

def merge(*dicts, **kv): 
      return { k:v for d in list(dicts) + [kv] for k,v in d.items() }

使用(在Python 3中测试):

assert (merge({1:11,'a':'aaa'},{1:99, 'b':'bbb'},foo='bar')==\
    {1: 99, 'foo': 'bar', 'b': 'bbb', 'a': 'aaa'})

assert (merge(foo='bar')=={'foo': 'bar'})

assert (merge({1:11},{1:99},foo='bar',baz='quux')==\
    {1: 99, 'foo': 'bar', 'baz':'quux'})

assert (merge({1:11},{1:99})=={1: 99})

你可以用Lambda。

另一个,更细致的选择:

z = dict(x, **y)

注意:这已成为一个受欢迎的答案,但重要的是要指出的是,如果 y 有任何不紧密的密钥,事实上,这完全是CPython实施细节的滥用,并且它不在Python 3或PyPy,IronPython,或Jython工作。