我想将两个词典融入一个新的词典。
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)
>>> z
{'a': 1, 'b': 3, 'c': 4}
每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。
我想将两个词典融入一个新的词典。
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)
>>> z
{'a': 1, 'b': 3, 'c': 4}
每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。
当前回答
是的,请用一个理解:
z={k: v for d in [x,y] for k, v in d.items()}
>>> print z
{'a': 1, 'c': 11, 'b': 10}
其他回答
在 Python 3.0 或更高版本中,您可以使用.ChainMap 集合多个字符或其他地图,以创建一个单一的可更新视图:
>>> from collections import ChainMap
>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> z = dict(ChainMap({}, y, x))
>>> for k, v in z.items():
print(k, '-->', v)
a --> 1
b --> 10
c --> 11
更新 Python 3.5 或更高版本: 您可以使用 PEP 448 延伸字典包装和解包。
>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> {**x, **y}
{'a': 1, 'b': 10, 'c': 11}
更新 Python 3.9 或更高版本: 您可以使用 PEP 584 联盟运营商:
>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> x | y
{'a': 1, 'b': 10, 'c': 11}
可以用一个单一的理解来做到这一点:
>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> { key: y[key] if key in y else x[key]
for key in set(x) + set(y)
}
在我看来,最好的答案是“单一表达”部分,因为没有额外的功能是必要的,而且它是短暂的。
z1 = dict(x.items() + y.items())
z2 = dict(x, **y)
在我的机器上,至少(一个相当常见的x86_64运行Python 2.5.2),替代Z2不仅更短,更简单,而且更快。
% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z1=dict(x.items() + y.items())'
100000 loops, best of 3: 5.67 usec per loop
% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z2=dict(x, **y)'
100000 loops, best of 3: 1.53 usec per loop
示例2:不超越的字典,将252条短线地图到整条,反之亦然:
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z1=dict(x.items() + y.items())'
1000 loops, best of 3: 260 usec per loop
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z2=dict(x, **y)'
10000 loops, best of 3: 26.9 usec per loop
z2赢得了大约10的因素,这在我的书中是一个相当大的胜利!
在比较这两个之后,我想知道 z1 的不良性能是否可以归功于构建两个项目列表的顶端,这反过来导致我想知道这个变量是否会更好地工作:
from itertools import chain
z3 = dict(chain(x.iteritems(), y.iteritems()))
% python -m timeit -s 'from itertools import chain; from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z3=dict(chain(x.iteritems(), y.iteritems()))'
10000 loops, best of 3: 66 usec per loop
z0 = dict(x)
z0.update(y)
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z0=dict(x); z0.update(y)'
10000 loops, best of 3: 26.9 usec per loop
你也可以这样写作
z0 = x.copy()
z0.update(y)
正如托尼所做的那样,但(不令人惊讶)评分的差异显然没有对性能的测量效应。 使用任何人看起来对你是正确的。
这是 Python 3.5 或更大的表达式,将使用 Reduction 的字典组合:
>>> from functools import reduce
>>> l = [{'a': 1}, {'b': 2}, {'a': 100, 'c': 3}]
>>> reduce(lambda x, y: {**x, **y}, l, {})
{'a': 100, 'b': 2, 'c': 3}
注意:即使字典列表是空的,或者只有一个元素。
在 Python 3.9 或更高版本中,Lambda 可以直接由 operator.ior 取代:
>>> from functools import reduce
>>> from operator import ior
>>> l = [{'a': 1}, {'b': 2}, {'a': 100, 'c': 3}]
>>> reduce(ior, l, {})
{'a': 100, 'b': 2, 'c': 3}
在 Python 3.8 或更低的情况下,可以使用下列作为 ior 的替代品:
>>> from functools import reduce
>>> l = [{'a': 1}, {'b': 2}, {'a': 100, 'c': 3}]
>>> reduce(lambda x, y: x.update(y) or x, l, {})
{'a': 100, 'b': 2, 'c': 3}
我将所提出的与 perfplot 比较,并发现
x | y # Python 3.9+
是最快的解决方案,与旧的好解决方案
{**x, **y}
和
temp = x.copy()
temp.update(y)
此分類上一篇
重复字符的代码:
from collections import ChainMap
from itertools import chain
import perfplot
def setup(n):
x = dict(zip(range(n), range(n)))
y = dict(zip(range(n, 2 * n), range(n, 2 * n)))
return x, y
def copy_update(x, y):
temp = x.copy()
temp.update(y)
return temp
def add_items(x, y):
return dict(list(x.items()) + list(y.items()))
def curly_star(x, y):
return {**x, **y}
def chain_map(x, y):
return dict(ChainMap({}, y, x))
def itertools_chain(x, y):
return dict(chain(x.items(), y.items()))
def python39_concat(x, y):
return x | y
b = perfplot.bench(
setup=setup,
kernels=[
copy_update,
add_items,
curly_star,
chain_map,
itertools_chain,
python39_concat,
],
labels=[
"copy_update",
"dict(list(x.items()) + list(y.items()))",
"{**x, **y}",
"chain_map",
"itertools.chain",
"x | y",
],
n_range=[2 ** k for k in range(18)],
xlabel="len(x), len(y)",
equality_check=None,
)
b.save("out.png")
b.show()