使用new_list=my_list时,对new_list的任何修改都会每次更改my_list。为什么会出现这种情况,以及如何克隆或复制列表以防止出现这种情况?


当前回答

已经有很多答案告诉你如何制作一个正确的副本,但没有一个答案说明为什么你的原始“副本”失败了。

Python不在变量中存储值;它将名称绑定到对象。您的原始赋值接受my_list引用的对象,并将其绑定到new_list。无论使用哪一个名称,仍然只有一个列表,因此当将其引用为my_list时所做的更改将在将其引用成new_list时保持不变。这个问题的每个其他答案都为您提供了创建新对象以绑定到new_list的不同方法。

列表中的每个元素都像一个名称,因为每个元素都以非独占方式绑定到一个对象。浅层副本创建一个新列表,其元素绑定到与之前相同的对象。

new_list = list(my_list)  # or my_list[:], but I prefer this syntax
# is simply a shorter way of:
new_list = [element for element in my_list]

要使列表副本更进一步,请复制列表引用的每个对象,并将这些元素副本绑定到新列表。

import copy  
# each element must have __copy__ defined for this...
new_list = [copy.copy(element) for element in my_list]

这还不是深度复制,因为列表的每个元素都可能引用其他对象,就像列表绑定到其元素一样。要递归复制列表中的每个元素,然后复制每个元素引用的每个其他对象,依此类推:执行深度复制。

import copy
# each element must have __deepcopy__ defined for this...
new_list = copy.deepcopy(my_list)

有关复制中的角盒的详细信息,请参阅文档。

其他回答

这是因为,行new_list=my_list为变量my_list分配了一个新的引用,即new_list这类似于下面给出的C代码,

int my_list[] = [1,2,3,4];
int *new_list;
new_list = my_list;

您应该使用复制模块创建新列表

import copy
new_list = copy.deepcopy(my_list)

对每种复制模式的简短解释:

浅层副本构造一个新的复合对象,然后(在可能的范围内)向其中插入对原始对象的引用-创建浅层副本:

new_list = my_list

深度副本构造一个新的复合对象,然后递归地将原始对象的副本插入其中,从而创建一个深度副本:

new_list = list(my_list)

list()适用于简单列表的深度复制,例如:

my_list = ["A","B","C"]

但是,对于复杂的列表,如。。。

my_complex_list = [{'A' : 500, 'B' : 501},{'C' : 502}]

…使用deepcopy():

import copy
new_complex_list = copy.deepcopy(my_complex_list)

有人告诉我Python 3.3+添加了list.copy()方法,它应该和切片一样快:

newlist = old_list.copy()

deepcopy选项是唯一适用于我的方法:

from copy import deepcopy

a = [   [ list(range(1, 3)) for i in range(3) ]   ]
b = deepcopy(a)
b[0][1]=[3]
print('Deep:')
print(a)
print(b)
print('-----------------------------')
a = [   [ list(range(1, 3)) for i in range(3) ]   ]
b = a*1
b[0][1]=[3]
print('*1:')
print(a)
print(b)
print('-----------------------------')
a = [   [ list(range(1, 3)) for i in range(3) ] ]
b = a[:]
b[0][1]=[3]
print('Vector copy:')
print(a)
print(b)
print('-----------------------------')
a = [   [ list(range(1, 3)) for i in range(3) ]  ]
b = list(a)
b[0][1]=[3]
print('List copy:')
print(a)
print(b)
print('-----------------------------')
a = [   [ list(range(1, 3)) for i in range(3) ]  ]
b = a.copy()
b[0][1]=[3]
print('.copy():')
print(a)
print(b)
print('-----------------------------')
a = [   [ list(range(1, 3)) for i in range(3) ]  ]
b = a
b[0][1]=[3]
print('Shallow:')
print(a)
print(b)
print('-----------------------------')

导致输出:

Deep:
[[[1, 2], [1, 2], [1, 2]]]
[[[1, 2], [3], [1, 2]]]
-----------------------------
*1:
[[[1, 2], [3], [1, 2]]]
[[[1, 2], [3], [1, 2]]]
-----------------------------
Vector copy:
[[[1, 2], [3], [1, 2]]]
[[[1, 2], [3], [1, 2]]]
-----------------------------
List copy:
[[[1, 2], [3], [1, 2]]]
[[[1, 2], [3], [1, 2]]]
-----------------------------
.copy():
[[[1, 2], [3], [1, 2]]]
[[[1, 2], [3], [1, 2]]]
-----------------------------
Shallow:
[[[1, 2], [3], [1, 2]]]
[[[1, 2], [3], [1, 2]]]
-----------------------------

让我惊讶的是,这还没有被提及,所以为了完整起见。。。

您可以使用“splat operator”:*执行列表解包,这也将复制列表的元素。

old_list = [1, 2, 3]

new_list = [*old_list]

new_list.append(4)
old_list == [1, 2, 3]
new_list == [1, 2, 3, 4]

这种方法的明显缺点是它仅在Python 3.5+中可用。

尽管从时间上看,这似乎比其他常用方法表现得更好。

x = [random.random() for _ in range(1000)]

%timeit a = list(x)
%timeit a = x.copy()
%timeit a = x[:]

%timeit a = [*x]

#: 2.47 µs ± 38.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
#: 2.47 µs ± 54.6 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
#: 2.39 µs ± 58.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

#: 2.22 µs ± 43.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)