很久以前,我花1.25美元在便宜货桌上买了一本数据结构的书。在这篇文章中,哈希函数的解释说,由于“数学的本质”,它最终应该被一个质数mod。
你对一本1.25美元的书有什么期待?
不管怎么说,我花了很多年思考数学的本质,但还是没弄明白。
当有质数个桶时,数字的分布真的更均匀吗?
或者这是一个老程序员的故事,每个人都接受,因为其他人都接受?
很久以前,我花1.25美元在便宜货桌上买了一本数据结构的书。在这篇文章中,哈希函数的解释说,由于“数学的本质”,它最终应该被一个质数mod。
你对一本1.25美元的书有什么期待?
不管怎么说,我花了很多年思考数学的本质,但还是没弄明白。
当有质数个桶时,数字的分布真的更均匀吗?
或者这是一个老程序员的故事,每个人都接受,因为其他人都接受?
当前回答
我想说,这个链接的第一个答案是我找到的关于这个问题的最清晰的答案。
考虑键K ={0,1,…,100}和一个哈希表,其中桶数为m = 12。因为3是12的因数,所以是3倍数的键将被散列到是3倍数的存储桶中:
键{0,12、24、36…}将被散列到bucket 0。 键{3,15日,27日,39岁,…}将被散列到桶3。 键{42 6日,18日,30日,…}将被散列到桶6。 键{9日,21日,33岁,45岁,…}将被散列到桶9。
如果K是均匀分布的(即K中的每个键出现的可能性都是相等的),那么m的选择就不是那么关键了。但是,如果K不是均匀分布的呢?想象最有可能出现的键是3的倍数。在这种情况下,所有不是3倍数的桶都很可能是空的(这在哈希表性能方面非常糟糕)。
这种情况比看起来更常见。例如,想象一下,您正在根据对象在内存中的存储位置来跟踪它们。如果您的计算机的字大小是4个字节,那么您将哈希键是4的倍数。不用说,选择m是4的倍数将是一个糟糕的选择:你将有3m/4个桶完全空了,所有的键都在剩下的m/4个桶中碰撞。
一般来说:
K中每一个与桶数m有公因数的键都将被哈希为这个因数的倍数。
因此,为了尽量减少碰撞,减少m和k的元素之间的公因数的数量是很重要的,这是如何实现的呢?通过选择m是一个因数很少的数,一个质数。
来自马里奥的回答。
其他回答
博士tl;
Index [hash(input)%2]将导致所有可能哈希值的一半和一段值发生冲突。Index [hash(input)%prime]导致所有可能哈希值中的<2的碰撞。将除数固定为表的大小还可以确保数字不能大于表。
我想为Steve Jessop的回答补充一些东西(我不能评论,因为我没有足够的声誉)。但我找到了一些有用的材料。他的回答很有帮助,但他犯了一个错误:桶的大小不应该是2的幂。我引用Thomas Cormen, Charles Leisersen等人写的《算法导论》263页
When using the division method, we usually avoid certain values of m. For example, m should not be a power of 2, since if m = 2^p, then h(k) is just the p lowest-order bits of k. Unless we know that all low-order p-bit patterns are equally likely, we are better off designing the hash function to depend on all the bits of the key. As Exercise 11.3-3 asks you to show, choosing m = 2^p-1 when k is a character string interpreted in radix 2^p may be a poor choice, because permuting the characters of k does not change its hash value.
希望能有所帮助。
这取决于哈希函数的选择。
许多哈希函数通过将数据中的各种元素与一些因子相乘,再乘以与机器的字大小相对应的2的幂的模(这个模可以通过让计算溢出来释放)来组合数据中的各种元素。
您不希望在数据元素的乘数和哈希表的大小之间有任何公共因子,因为这样可能会发生改变数据元素不会将数据分散到整个表上的情况。如果你为表的大小选择一个质数,这样的公因数是极不可能的。
另一方面,这些因数通常由奇数质数组成,因此在哈希表中使用2的幂也应该是安全的(例如,Eclipse在生成Java hashCode()方法时使用31)。
Primes are unique numbers. They are unique in that, the product of a prime with any other number has the best chance of being unique (not as unique as the prime itself of-course) due to the fact that a prime is used to compose it. This property is used in hashing functions. Given a string “Samuel”, you can generate a unique hash by multiply each of the constituent digits or letters with a prime number and adding them up. This is why primes are used. However using primes is an old technique. The key here to understand that as long as you can generate a sufficiently unique key you can move to other hashing techniques too. Go here for more on this topic about http://www.azillionmonkeys.com/qed/hash.html
http://computinglife.wordpress.com/2008/11/20/why-do-hash-functions-use-prime-numbers/
这个问题与更合适的问题合并,为什么哈希表应该使用素数大小的数组,而不是2的幂。 对于哈希函数本身,这里有很多很好的答案,但对于相关的问题,为什么一些安全关键的哈希表,如glibc,使用质数大小的数组,目前还没有。
通常两张表的幂要快得多。这里有昂贵的h % n => h和位掩码,其中位掩码可以通过大小为n的clz(“计数前导零”)计算。模函数需要做整数除法,这比逻辑和要慢50倍。有一些技巧可以避免取模,比如使用Lemire的https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/,但通常快速哈希表使用2的幂,而安全哈希表使用质数。
为什么如此?
Security in this case is defined by attacks on the collision resolution strategy, which is with most hash tables just linear search in a linked list of collisions. Or with the faster open-addressing tables linear search in the table directly. So with power of 2 tables and some internal knowledge of the table, e.g. the size or the order of the list of keys provided by some JSON interface, you get the number of right bits used. The number of ones on the bitmask. This is typically lower than 10 bits. And for 5-10 bits it's trivial to brute force collisions even with the strongest and slowest hash functions. You don't get the full security of your 32bit or 64 bit hash functions anymore. And the point is to use fast small hash functions, not monsters such as murmur or even siphash.
因此,如果你为哈希表提供一个外部接口,比如DNS解析器、编程语言……你想要关心那些喜欢使用DOS服务的人。对这些人来说,用简单得多的方法关闭你的公共服务通常更容易,但这种情况确实发生了。所以人们确实关心。
因此,防止这种碰撞攻击的最佳选择是
1)使用质数表,因为
所有32位或64位都与查找桶相关,而不仅仅是几个。 哈希表的大小调整函数比double更自然。最好的生长函数是斐波那契数列,质数更接近于它,而不是翻倍。
2)使用更好的措施对抗实际攻击,加上2个尺寸的快速功率。
计算碰撞次数,并在检测到攻击时中止或休眠,即概率<1%的碰撞次数。比如100个32位哈希表。这就是djb的dns解析器所做的。 当检测到碰撞攻击时,将碰撞链表转换为O(log n)搜索而不是O(n)的树。这就是例如java所做的。
有一个广为流传的神话,更安全的哈希函数有助于防止这种攻击,这是错误的,正如我解释的那样。只有低比特是不安全的。这只适用于质数大小的表,但这将使用两个最慢方法的组合,慢哈希+慢质数模。
哈希表的哈希函数主要需要小(内联)和快速。安全性只能来自于防止冲突中的线性搜索。并且不要使用非常糟糕的哈希函数,比如对某些值不敏感的哈希函数(比如使用乘法时的\0)。
使用随机种子也是一个不错的选择,人们首先使用随机种子,但是有了足够的表信息,即使是随机种子也没有多大帮助,而动态语言通常使通过其他方法获取种子变得很简单,因为它存储在已知的内存位置中。