我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

f#中的简单解决方案(不使用“技巧”)

let rec f n =
    if n = 0 then 0
    elif n > 0 then
        if (f (n - 1) <> n) then n + 1
        else -(n - 1)
    else
        if (f (-(n - 1)) = n) then n - 1
        else -(n + 1) 

其他回答

这适用于1073741823至1073741822范围:

int F(int n)
{
    if(n < 0)
    {
        if(n > -1073741824)
            n = -1073741824 + n;
        else n = -(n + 1073741824);
    }
    else
    {
        if(n < 1073741823)
            n = 1073741823 + n;
        else n = -(n - 1073741823);
    }
    return n;
}

它的工作原理是获取32位有符号整数的可用范围并将其一分为二。函数的第一次迭代将n自身置于该范围之外。第二次迭代检查它是否在该范围之外-如果是,则将其放回该范围内,但使其为负值。

这实际上是一种保留关于值n的额外“位”信息的方法。

这个Perl解决方案适用于整数、浮点数和字符串。

sub f {
    my $n = shift;
    return ref($n) ? -$$n : \$n;
}

尝试一些测试数据。

print $_, ' ', f(f($_)), "\n" for -2, 0, 1, 1.1, -3.3, 'foo' '-bar';

输出:

-2 2
0 0
1 -1
1.1 -1.1
-3.3 3.3
foo -foo
-bar +bar

我有另一个解决方案,它可以在一半时间内工作:

def f(x):
    if random.randrange(0, 2):
        return -x
    return x

我可以想象,使用第31位作为虚(I)位将是一种支持一半总范围的方法。

C++解决方案;

long long f(int n){return static_cast <long long> (n);}
int f(long long n){return -static_cast <int> (n);}

int n = 777;
assert(f(f(n)) == -n);