我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
适用于n=[0..2^31-1]
int f(int n) {
if (n & (1 << 31)) // highest bit set?
return -(n & ~(1 << 31)); // return negative of original n
else
return n | (1 << 31); // return n with highest bit set
}
其他回答
int f(const int n) {
static int last_n;
if (n == 0)
return 0;
else if (n == last_n)
return -n;
else
{
last_n = n;
return n;
}
}
哈克,但正确。
类似于python中的函数重载解决方案:
def f(number):
if type(number) != type([]):
return [].append(number)
else:
return -1*number[0]
备选方案:静态数据成员
int f(int n)
{
static long counter=0;
counter++;
if(counter%2==0)
return -n;
else
return n;
}
使用全局。。。但事实如此?
bool done = false
f(int n)
{
int out = n;
if(!done)
{
out = n * -1;
done = true;
}
return out;
}
int f(int x){
if (x < 0)
return x;
return ~x+1; //two's complement
}