我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
这也是一个解决方案(但我们稍微改变了一下规则):
def f(n):
if isinstance(n,int):
return str(n)
else:
return -int(n)
其他回答
从来没有人说过f(x)必须是同一类型。
def f(x):
if type(x) == list:
return -x[0]
return [x]
f(2) => [2]
f(f(2)) => -2
这个问题并没有说明函数f的输入类型和返回值必须是什么(至少不是你给出的方式)。。。
…只是当n是32位整数时,f(f(n))=-n
那么,怎么样
Int64 f(Int64 n)
{
return(n > Int32.MaxValue ?
-(n - 4L * Int32.MaxValue):
n + 4L * Int32.MaxValue);
}
如果n是32位整数,则语句f(f(n))==-n将为真。
显然,这种方法可以扩展到更大范围的数字。。。
本质上,函数必须将可用范围划分为大小为4的循环,其中-n位于n循环的另一端。但是,0必须是大小为1的循环的一部分,否则0->x->0->x!=-x.因为0是单独的,所以在我们的范围内必须有3个其他值(其大小是4的倍数)不在具有4个元素的正确循环中。
我选择这些额外的奇怪值为MIN_INT、MAX_INT和MIN_INT+1。此外,MIN_INT+1将正确映射到MAX_INT,但会被卡在那里而不能映射回来。我认为这是最好的妥协,因为它有一个很好的特性,即只有极端值不能正常工作。此外,这意味着它将适用于所有BigInt。
int f(int n):
if n == 0 or n == MIN_INT or n == MAX_INT: return n
return ((Math.abs(n) mod 2) * 2 - 1) * n + Math.sign(n)
在PHP中
function f($n) {
if(is_int($n)) {
return (string)$n;
}
else {
return (int)$n * (-1);
}
}
我相信你能理解其他语言的这种方法的精神。为了让不使用弱类型语言的人更清楚,我明确地将其转换回int。对于某些语言,您必须重载该函数。
这个解决方案的妙处在于,无论您是从字符串还是整数开始,它都是有效的,并且在返回f(n)时不会明显改变任何内容。
在我看来,面试官在问,“这位应聘者是否知道如何标记数据以供以后操作”,以及“这位应聘人员是否知道如何在最少更改数据的情况下标记数据?”你可以使用双精度、字符串或任何其他你想使用的数据类型来实现这一点。
也许是作弊?(python)
def f(n):
if isinstance(n, list):
return -n[0]
else:
return [n,0]
n = 4
print f(f(n))
--output--
-4