我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

PHP,不使用全局变量:

function f($num) {
  static $mem;

  $answer = $num-$mem;

  if ($mem == 0) {
    $mem = $num*2;
  } else {
    $mem = 0;
  }

  return $answer;
}

适用于整数、浮点数和数字字符串!

只是意识到这会做一些不必要的工作,但是,不管怎样

其他回答

JavaScript单行:

function f(n) { return ((f.f = !f.f) * 2 - 1) * n; }

Python 2.6:

f = lambda n: (n % 2 * n or -n) + (n > 0) - (n < 0)

我意识到这对讨论毫无帮助,但我无法抗拒。

我有另一个解决方案,它可以在一半时间内工作:

def f(x):
    if random.randrange(0, 2):
        return -x
    return x

Tcl:

proc f {input} {
    if { [string is integer $input] } {
      return [list expr [list 0 - $input]]
    } else {
      return [eval $input]
    }
}

% f [f 1]
-1

按照其他一些答案的思路。。。如果它是一个整数,则返回一个返回该数字负数的命令。如果不是数字,请对其求值并返回结果。

这个怎么样?

int nasty(int input)
{
    return input + INT_MAX/2;
}