我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

本质上,函数必须将可用范围划分为大小为4的循环,其中-n位于n循环的另一端。但是,0必须是大小为1的循环的一部分,否则0->x->0->x!=-x.因为0是单独的,所以在我们的范围内必须有3个其他值(其大小是4的倍数)不在具有4个元素的正确循环中。

我选择这些额外的奇怪值为MIN_INT、MAX_INT和MIN_INT+1。此外,MIN_INT+1将正确映射到MAX_INT,但会被卡在那里而不能映射回来。我认为这是最好的妥协,因为它有一个很好的特性,即只有极端值不能正常工作。此外,这意味着它将适用于所有BigInt。

int f(int n):
    if n == 0 or n == MIN_INT or n == MAX_INT: return n
    return ((Math.abs(n) mod 2) * 2 - 1) * n + Math.sign(n)

其他回答

f(n) { return IsWholeNumber(n)? 1/n : -1/n }

利用JavaScript异常。

function f(n) {
    try {
        return n();
    }
    catch(e) { 
        return function() { return -n; };
    }
}

f(f(0))=>0f(f(1))=>-1

我有另一个解决方案,它可以在一半时间内工作:

def f(x):
    if random.randrange(0, 2):
        return -x
    return x

除int.MaxValue和int.MinValue以外的工作

    public static int f(int x)
    {

        if (x == 0) return 0;

        if ((x % 2) != 0)
            return x * -1 + (-1 *x) / (Math.Abs(x));
        else
            return x - x / (Math.Abs(x));
    }

我相信这符合所有要求。没有什么规定参数必须是32位有符号整数,只有你传入的值“n”是。

long long f(long long n)
{
    int high_int = n >> 32;
    int low_int  = n & 0xFFFFFFFF;

    if (high_int == 0) {
        return 0x100000000LL + low_int;
    } else {
        return -low_int;
    }
}