我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

int func(int a)  
{   
    static int p = 0;  
    int ret = a;  

    if ( p ) ret *= -1;  
    p ^= 1;  

    return ret;  
}  

其他回答

另一种方法是将状态保持在一位,并在负数的情况下翻转它,注意二进制表示。。。限制为2^29

整数ffn(整数n){

    n = n ^ (1 << 30); //flip the bit
    if (n>0)// if negative then there's a two's complement
    {
        if (n & (1<<30))
        {
            return n;
        }
        else
        {
            return -n;
        }
    }
    else
    {
        if (n & (1<<30))
        {
            return -n;
        }
        else
        {
            return n;
        }
    }


}

对于javascript(或其他动态类型语言),可以让函数接受int或对象,并返回另一个。即

function f(n) {
    if (n.passed) {
        return -n.val;
    } else {
        return {val:n, passed:1};
    }
}

js> f(f(10))  
-10
js> f(f(-10))
10

或者,您可以在强类型语言中使用重载,尽管这可能会破坏规则

int f(long n) {
    return n;
}

long f(int n) {
    return -n;
}
int f(int n)
{
  static long counter=0;
  counter++;
  if(counter%2==0)
    return -n;
  else
    return n;
}

下面是一个简短的Python答案:

def f(n):
  m = -n if n % 2 == 0 else n
  return m + sign(n)

一般情况

稍微调整一下上面的内容就可以处理我们希望k个自调用否定输入的情况——例如,如果k=3,这意味着g(g(g)n))=-n:

def g(n):
  if n % k: return n + sign(n)
  return -n + (k - 1) * sign(n)

这是通过将0保留在适当位置并创建长度为2*k的循环来实现的,因此,在任何循环中,n和-n之间的距离为k。具体来说,每个周期如下:

N * k + 1, N * k + 2, ... , N * k + (k - 1), - N * k - 1, ... , - N * k - (k - 1)

或者,为了更容易理解,这里是k=3的示例循环:

1, 2, 3, -1, -2, -3
4, 5, 6, -4, -5, -6

这组循环最大化了在任何以零为中心的机器类型(如有符号int32或有符号int64类型)内工作的输入范围。

兼容范围分析

映射x->f(x)实际上必须形成长度为2*k的循环,其中x=0是特殊情况下的1-长度循环,因为-0=0。因此,一般k的问题是可解的,当且仅当输入-1(补偿0)的范围是2*k的倍数,并且正负范围是相反的。

对于有符号整数表示,我们总是有一个最小的负数,在该范围内没有正的对应项,因此该问题在整个范围内变得不可解决。例如,有符号字符的范围为[-128127],因此在给定范围内f(f(-128))=128是不可能的。

我相信这符合所有要求。没有什么规定参数必须是32位有符号整数,只有你传入的值“n”是。

long long f(long long n)
{
    int high_int = n >> 32;
    int low_int  = n & 0xFFFFFFFF;

    if (high_int == 0) {
        return 0x100000000LL + low_int;
    } else {
        return -low_int;
    }
}