我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
很简单,只需让f返回看起来等于任何整数的值,并且可以从整数转换。
public class Agreeable
{
public static bool operator==(Agreeable c, int n)
{ return true; }
public static bool operator!=(Agreeable c, int n)
{ return false; }
public static implicit operator Agreeable(int n)
{ return new Agreeable(); }
}
class Program
{
public static Agreeable f(Agreeable c)
{ return c; }
static void Main(string[] args)
{
Debug.Assert(f(f(0)) == 0);
Debug.Assert(f(f(5)) == -5);
Debug.Assert(f(f(-5)) == 5);
Debug.Assert(f(f(int.MaxValue)) == -int.MaxValue);
}
}
其他回答
MIN_INT不会失败:
int f(n) { return n < 0 ? -abs(n + 1) : -(abs(n) + 1); }
这是一个C/C++解决方案,它不使用任何按位运算符,也不需要任何数学库,尽管这有点作弊。。。
double f(double n)
{
if (n == (double)(int)n)
return n + 0.5;
else
return -(n - 0.5);
}
这适用于所有32位整数,只有一个异常0x80000000(因为它的相反值不能存储在32位整数系统中)。f(f(n))==-n将始终为真,除非在这种情况下。
不过,我相信有一种更简单、更快的方法来实现它。这只是我第一个想到的。
C++
struct Value
{
int value;
Value(int v) : value(v) {}
operator int () { return -value; }
};
Value f(Value input)
{
return input;
}
我有另一个解决方案,它可以在一半时间内工作:
def f(x):
if random.randrange(0, 2):
return -x
return x
这很简单!
每个数字以4为周期映射到另一个数字,其中所需条件成立。
例子:
规则如下:
0→ 0±2³¹ → ±2³¹古怪的→ 甚至,甚至→ -奇数:对于所有k,0<k<2³⁰: (2k-1)→ (2k)→ (-2k+1)→ (-2k)→ (2k-1)
唯一不匹配的值是±(2³¹-1),因为只有两个。必须有两个不能匹配,因为在二进制补码系统中只有四个数字的倍数,其中0和±2³¹已被保留。
在一的补码系统中,存在+0和-0。我们开始了:
对于所有k,0<k<2³⁰: (+2k)→ (+2k+1)→ (-2k)→ (-2k-1)→ (+2k)