我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
这是一个C/C++解决方案,它不使用任何按位运算符,也不需要任何数学库,尽管这有点作弊。。。
double f(double n)
{
if (n == (double)(int)n)
return n + 0.5;
else
return -(n - 0.5);
}
这适用于所有32位整数,只有一个异常0x80000000(因为它的相反值不能存储在32位整数系统中)。f(f(n))==-n将始终为真,除非在这种情况下。
不过,我相信有一种更简单、更快的方法来实现它。这只是我第一个想到的。
其他回答
SQL Server中的解决方案
create function dbo.fn_fo(@num int) -- OUTER FUNCTION
RETURNS int
AS
begin
RETURN @num * -1
end
GO
create function dbo.fn_fi(@num int) -- INNER FUNCTION
RETURNS int
AS
begin
RETURN @num * -1
end
GO
declare @num AS int = -42
SELECT dbo.fn_fo(dbo.fn_fi(@num)) -- Gives (-42)
上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。
红宝石:
def f( n )
return 0 unless n != 0
( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end
用咖啡脚本打高尔夫:
f = (n)-> -n[0] or [n]
我想我会先不看别人的答案就试试这个:
#include <stdio.h> #include <limits.h> #include <stdlib.h> int f(int n) { if(n > 0) { if(n % 2) return -(++n); else { return (--n); } } else { if(n % 2) return -(--n); else { return (++n); } } } int main(int argc, char* argv[]) { int n; for(n = INT_MIN; n < INT_MAX; n++) { int N = f(f(n)); if(N != -n) { fprintf(stderr, "FAIL! %i != %i\n", N, -n); } } n = INT_MAX; int N = f(f(n)); if(N != -n) { fprintf(stderr, "FAIL! n = %i\n", n); } return 0; }
输出:[无]
一个C++版本,可能会稍微改变规则,但适用于所有数值类型(浮点、整型、双精度),甚至是重载一元负号的类类型:
template <class T>
struct f_result
{
T value;
};
template <class T>
f_result <T> f (T n)
{
f_result <T> result = {n};
return result;
}
template <class T>
T f (f_result <T> n)
{
return -n.value;
}
void main (void)
{
int n = 45;
cout << "f(f(" << n << ")) = " << f(f(n)) << endl;
float p = 3.14f;
cout << "f(f(" << p << ")) = " << f(f(p)) << endl;
}